Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 5–6, pp 400–407 | Cite as

Study of geometric parameters of nonspherical nanoparticles by partially depolarized dynamic light scattering

  • A. D. Levin
  • A. S. Lobach
  • E. A. Shmytkova
Article

Abstract

An improved version of the depolarized dynamic light scattering method, which can be used for determining geometric parameters of nonspherical nanoparticles in liquids, has been proposed. Formulas are obtained that allow us to find the coefficients of translational and rotational diffusion of nanoparticles from autocorrelation functions of scattered light containing polarized and depolarized components in various ratios. This makes it possible to avoid the need to measure a completely depolarized component possessing an extremely low intensity. The proposed improvement presents the possibility of reducing the registration time and improving the signal-to-noise ratio and the accuracy of the results. Measurements of the parameters of multiwall carbon nanotubes in aqueous suspensions have been carried out. The values of the length and diameter of the tubes calculated by the coefficients of diffusion obtained with the help of the proposed method agree with the results of measurements on scanning and transmission electron microscopes.

Keywords

Dynamic Light Scattering Polarization Analyzer Rotational Diffusion Dynamic Light Scattering Method Glan Prism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Koroteev, O. S. Malinovskaya, R. N. Rizakhanov, and N. A. Sokolova, “Nanotechnologies in space industry: application trends,” Polet, No. 8, 5–18 (2013).Google Scholar
  2. 2.
    N. K. Reddy, J. Pérez-Juste, I. Pastoriza-Santos, P. R. Lang, J. K. G. Dhont, L. M. Liz-Marzán, and J. Vermant, “Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles,” ACS Nano 5(6), 4935–4944 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Badaire, et al., “In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering,” Langmuir, No. 20, 10367 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Rodriguez-Fernandez, “Dynamic light scattering of short Au rods with low aspect ratios,” J. Phys. Chem. C 111, 5020–5025 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Glidden, et al., “Characterizing gold nanorods in solution using depolarized dynamic light scattering,” J. Phys. Chem. C 116, 8128–8137 (2012).CrossRefGoogle Scholar
  6. 6.
    A. M. Shetty, et al., “Multiangle depolarized dynamic light scattering of short functionalized single-walled carbon nanotubes,” J. Phys. Chem. C 113(17), 7129–7133 (2009).CrossRefGoogle Scholar
  7. 7.
    A. D. Levin, Yu. M. Sadagov, L. L. Koroli, and E. A. Shmytkova, “Development of optical-spectral techniques for the characterization of nanoparticles,” Nanotech. Russ. 8(5–6), 373 (2013).CrossRefGoogle Scholar
  8. 8.
    R. Pecora, “Spectrum of light scattered from optically anisotropic macromolecules,” J. Phys. Chem. C 49(3), 1036–1043 (1968).CrossRefGoogle Scholar
  9. 9.
    J.-P. Tessonnier, D. Rosenthal, T. W. Hansen, C. Hess, M. E. Schuster, R. Blume, F. Girgsdies, N. Pfänder, O. Timpe, D. S. Su, and R. Schlögl, Carbon 47, 1779 (2009).CrossRefGoogle Scholar
  10. 10.
    Bayer Material Science AG. Data sheet Baytubes C150P, 2009-02-24 Ed. (2009). http://www.baytubes.com
  11. 11.
    J. P. Quigley, K. Herrington, M. Bortner, and D. G. Baird, “Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process,” Appl. Phys. A 117, 1003–1017 (2014).CrossRefGoogle Scholar
  12. 12.
    M. M. Tirado, C. L. Martinez and J. Garcia de la Torre, “Comparison of theories for the translational and rotational diffusion coefficients of rodlike macromolecules, application to short DNA fragments,” J. Chem. Phys. 81, 2047–2052 (1984).CrossRefGoogle Scholar
  13. 13.
    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Nordhoff, Leyden, 1973), Chap. 5.Google Scholar
  14. 14.
    T. Eitoku, et al., “Depolarized dynamic light scattering study of multi-walled carbon nanotubes in solution,” Mater. Express 3(1), 37–42 (2013).CrossRefGoogle Scholar
  15. 15.
    Bing-Yang Cao and Ruo-Yu Dong, “Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid,” J. Chem. Phys. 140, 034703 1–5 (2014).Google Scholar
  16. 16.
    A. D. Tsyboulski, S. M. Bachilo, et al., “Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension,” ACS Nano 2(9), 1770–1776 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Broersma, “Viscos forse constants for a closed cylinder,” J. Chem. Phys. 32(6), 1632–1635 (1960).CrossRefGoogle Scholar
  18. 18.
    H. S. Yun and C. H. Lee, “Translational and rotational diffusions of multiwalled carbon nanotubes with static bending,” J. Chem. Phys. 112(29), 10653–10658 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. D. Levin
    • 1
  • A. S. Lobach
    • 2
  • E. A. Shmytkova
    • 1
    • 3
  1. 1.FSUE All-Russian Scientific and Research Institute for Optical and Physical MeasurementsMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Keldysh Research CenterMoscowRussia

Personalised recommendations