Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 3–4, pp 220–230 | Cite as

Mechanochemically synthesized powder precursors local structure influence on the microstructure of SHS Fe2O3/Fe/Zr/ZrO2 composites

  • T. Yu. Kiseleva
  • A. I. Letsko
  • T. L. Talako
  • S. A. Kovaleva
  • T. F. Grigorieva
  • A. A. Novakova
  • N. Z. Lyakhov
Article

Abstract

Composite powder materials containing zirconia and iron oxide nanoparticles, as well as iron-zirconium intermetallic compounds, are of great interest for use as high-temperature functional coatings, in catalysis, and for medical and biotechnological purposes. In this work the influence of the forming local structure of particles during the mechanical activation of Fe/Zr and Fe2O3/(Fe/Zr) powder precursors on the microstructure of Fe2O3/Fe/Zr/ZrO2 nanocomposites, synthesized in a SHS combustion mode, is investigated.

Keywords

Zirconium Mechanical Activation Composite Particle Mechanochemically Synthesize Zirconium Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bernard and E. Gaffet, “Mechanical alloying in SHS research,” Int. J. Self-Propag. High-Temp. Synth. 2, 109–131 (2001).Google Scholar
  2. 2.
    V. V. Kurbatkina, A. S. Rogachev, and N. A. Kochetov, “Mechanoactivation of SHS system and processes,” Int. J. SHS 16 (1), 46–50 (2007).Google Scholar
  3. 3.
    N. Z. Lyakhov, T. L. Talako, and T. F. Grigor’eva, in Mechanoactivation Effect onto Phase- and Structure Formation Processes under Self-Propagating High-Temperature Synthesis, Ed. by O. I. Lomovskii (Parallel’, Novosibirsk, 2008) [in Russian].Google Scholar
  4. 4.
    A. S. Rogachev and A. S. Mukas’yan, “Burning of heterogeneous nanostructured systems,” Fiz. Goreniya Vzryva 46 (3), 3–30 (2010).Google Scholar
  5. 5.
    T. F. Grigor’eva, A. I. Letsko, T. L. Talako, S. V. Tsybulya, I. A. Vorsina, A. P. Barinova, A. F. Il’yushchenko, and N. Z. Lyakhov, “The way to produce Cu/ZrO2 composites by combining mechanical activation and self-propagating high-temperature synthesis,” Fiz. Goren. Vzryva 47 (2), 54–58 (2011).Google Scholar
  6. 6.
    T. F. Grigor’eva, A. I. Letsko, T. L. Talako, S. V. Tsybulya, I. A. Vorsina, A. P. Barinova, A. F. Il’yushchenko, and N. Z. Lyakhov, “The way to produce Cu/TiO2 composites by combining mechanical activation and self-propagating high-temperature synthesis,” Zh. Prikl. Khim. 84 (11), 1765–1768 (2011).Google Scholar
  7. 7.
    State Diagrams for Double Metallic Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996–2000) [in Russian].Google Scholar
  8. 8.
    T. Yu. Kiseleva, A. A. Novakova, A. N. Falkova, T. L. Talako, and T. F. Grigor’eva, “The way to produce Fe0.70−xCrxAl0.3/Al2O3 nanocomposite by means of SHS method from mechanically activated Cr2O3 + Fe + Al mixtures,” Neorgan. Mater. 45 (7), 827–831 (2009).CrossRefGoogle Scholar
  9. 9.
    T. Yu. Kiseleva, T. F. Grigor’eva, D. V. Gostev, V. B. Potapkin, A. N. Falkova, and A. A. Novakova, “Structure research of Fe-Al nanomaterial produces by mechanical activation and self-propagating high-temperature synthesis,” Vestn. Moskovsk. Univ. Ser. 3. Fiz., Astron., No. 1, 56–61 (2008).Google Scholar
  10. 10.
    G. N. Konygin, N. Stevulova, G. A. Dorofeev, and E. P. Elsukov, “Effect of crushing bodies onto results of mechanical alloying of Fe and Si powders mixtures,” Khim. Interes. Ustoich. Razvit. 10 (1–2), 119–126 (2002).Google Scholar
  11. 11.
    L. Del Bianko, A. Hernando, and E. Bonetti, “Grainboundary structure and magnetic behavior in nanocrystalline ball-milled iron,” Phys. Rev. B 56 (14), 8894–8901 (1997).CrossRefGoogle Scholar
  12. 12.
    A. A. Novakova, O. V. Agladze, T. Yu. Kiseleva, B. P. Tarasov, and N. S. Perov, “The grain boundary structure influence n the magnetic properties of nanocrystalline iron,” Bull. Russ. Acad. Sci. Phys. 65 (7), 1016–1021 (2001).Google Scholar
  13. 13.
    V. P. Filippov, “Potentialities of Mossbauer spectroscopy for studying zirconium alloys and their oxide films,” Metal Sci. Heat Treat. 45 (11–12), 452–460 (2003).CrossRefGoogle Scholar
  14. 14.
    V. P. Filippov, A. B. Bateev, Yu. A. Lauer, and N. I. Kargin, “Mossbauer spectroscopy of zirconium alloys,” Hyperfine Interact. 217, 45–55 (2013).CrossRefGoogle Scholar
  15. 15.
    Mechanocomposites Precursors for Creating Materials with New Properties, Ed. by O. I. Lomovskii (Siberian Branch RAS, Novosibirsk, 2010) [in Russian].Google Scholar
  16. 16.
    T. Y. Kiseleva, A. A. Novakova, M. I. Chistyakova, A. O. Polyakov, T. S. Gendler, and T. F. Grigorieva, “Iron-based amorphous magnetic phase formation in the course of Fe and F2O3 mechanical activation,” Diffusion Defect Data Part B: Solid State Phenom. 152, 25–28 (2009).Google Scholar
  17. 17.
    T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, Mechanochamical Synthesis in Metallic Systems (Parallel’, Novosibirsk, 2008) [in Russian].Google Scholar
  18. 18.
    T. Yu. Kiseleva, A. A. Novakova, T. F. Grigor’eva, A. P. Barinova, and I. A. Vorsina, “Mechanical synthesis for corundum ceramics/intermetallide nanocomposites,” Perspekt. Mater., No. 6, 11–20 (2008).Google Scholar
  19. 19.
    T. Kiseleva, A. Novakova, M. Zimina, S. Polyakov, E. Levin, and T. Grigoryeva, “Mechanochemically induced formation of amorphous phase at oxide nanocomposite interfaces,” J. Phys.: Conf. Ser. 217 (1), 012106–012106 (2010).Google Scholar
  20. 20.
    G. Stefanic, S. Music, and A. Gajovic, “Structural and microstructural changes in monoclinic ZrO2 during ball milling with stainless steel assembly,” Mater. Res. Bull. 41, 764–777 (2006).CrossRefGoogle Scholar
  21. 21.
    J. Z. Jiang, F. W. Poulsen, and S. Morup, “Structure and thermal stability of nanostructured iron-doped zirconia prepared by high energy ball milling,” J. Mater. Res. 14 (4), 1343–1452 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. Yu. Kiseleva
    • 1
  • A. I. Letsko
    • 2
  • T. L. Talako
    • 2
  • S. A. Kovaleva
    • 3
  • T. F. Grigorieva
    • 4
  • A. A. Novakova
    • 1
  • N. Z. Lyakhov
    • 4
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.State Scientific Institution “The Power Metallurgy Institute”MinskRepublic of Belarus
  3. 3.State Scientific Institution “The Joint Institute of Mechanical Ingineering of the National Academy of Sciences of Belarus”MinskRepublic of Belarus
  4. 4.Institute of Solid State Chemistry and MechanochemistrySiberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations