Advertisement

Nanotechnologies in Russia

, Volume 10, Issue 1–2, pp 34–41 | Cite as

Influence of plasmodynamic synthesis energy in Si-C system on the product phase composition and dispersion

  • A. A. Sivkov
  • D. S. Nikitin
  • A. Ya. Pak
  • I. A. Rakhmatullin
Article

Abstract

The results of experimental studies on ultradispersed silicon carbide synthesis and production upon a hypervelocity silicon-carbon plasma jet influencing a copper barrier are presented. A significant increase of β-SiC content to 88% and average crystallite size from ∼70 to ∼140 nm was found by XRD, SEM, and TEM for energy growth from ∼10.0 to ∼30.0 kJ.

Keywords

Transmission Electron Microscopy Image Silicon Carbide Synthesis Product Scanning Electron Microscopy Picture Coherent Scattering Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Properties of Silicon Carbide, Ed. by G. L. Harris (Short Run Press, London, 1996).Google Scholar
  2. 2.
    M. Willander, M. Friesel, Q. Wahab, and B. Straumal, “Silicon carbide and diamond for high temperature device applications,” J. Mater. Sci.: Mater. Electron. 17, 1–25 (2006).Google Scholar
  3. 3.
    A. Lebedev and S. Sbruev, “SiC-elektronika,” Proshloe, Nastoyashchee, Budushchee. Elektron.: Nauka, Tekhnol., Biznes, No. 5, 28–41 (2006).Google Scholar
  4. 4.
    A. Polishchuk, “Semiconductor materials and devices for abnormal operating conditions,” Sovr. Elektron., No. 4, 20–25 (2006).Google Scholar
  5. 5.
    K. Watari, “High thermal conductivity non-oxide ceramics,” J. Ceram. Soc. Jpn. 109, S7–S16 (2001).CrossRefGoogle Scholar
  6. 6.
    Structural Ceramics, Ed. by J. Wachtman, Jr. (Acad. Press, London, 2012).Google Scholar
  7. 7.
    T. Narushima, T. Goto, T. Hirai, and Y. Iguchi, “Hightemperature oxidation of silicon carbide and silicon nitride,” Mater. Trans., JIM 38(10), 821–835 (1997).CrossRefGoogle Scholar
  8. 8.
    R. A. Andrievski, “Synthesis, structure and properties of nanosized silicon carbide,” Rev. Adv. Mater. Sci. 22, 1–20 (2009).Google Scholar
  9. 9.
    A. A. Sivkov, D. S. Nikitin, A. Ya. Pak, and I. A. Rakhmatullin, “Direct plasmadynamic synthesis of ultradispersed silicon carbide,” Tech. Phys. Lett. 39(1), 105–107 (2013).CrossRefGoogle Scholar
  10. 10.
    A. A. Sivkov, D. S. Nikitin, A. Ya. Pak, and I. A. Rakhmatullin, “Production of ultradispersed crystalline silicon carbide by plasmodynamic synthesis,” J. Superhard Mater. 35(3), 137–142 (2013).CrossRefGoogle Scholar
  11. 11.
    A. A. Sivkov and A. Ya. Pak, “Analysis of the dynamic synthesis superdispersed product in a C-N system by high resolution electron microscopy,” Tech. Phys. 58(4), 550–556 (2013).CrossRefGoogle Scholar
  12. 12.
    A. A. Sivkov and A. Ya. Pak, RF Patent No. 2431947. H05H 11/00, F41B 6/00, Byull. Izobret., No. 29 (2011).Google Scholar
  13. 13.
    S. V. Bobashev, B. G. Zhukov, R. A. Kurakin, S. A. Ponyaev, B. I. Reznikov, and S. I. Rozov, “Parameters of erosion carbon plasma in railotron channel,” Zh. Tekhn. Fiz. 80(12), 45–50 (2010).Google Scholar
  14. 14.
    A. A. Lebedev, “Heterojunctions and superlattices based on silicon carbide,” Semiconductor Sci. Technol. 21, 17–34 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Feng and Z. A. Munir, “Effect of an electric field on self-propagating combustion synthesis: Part II. Fieldassisted synthesis of β-SiC,” Metallurg. Mater. Trans. B: Process Metallurgy Mater. Processing Sci. 26(3), 587–593 (1995).CrossRefGoogle Scholar
  16. 16.
    V. Raman, O. P. Bahl, and U. Dhawan, “Synthesis of silicon carbide through the sol-gel process from different precursors,” J. Mater. Sci. 30, 2686–2693 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. A. Sivkov
    • 1
  • D. S. Nikitin
    • 1
  • A. Ya. Pak
    • 1
  • I. A. Rakhmatullin
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations