Nanotechnologies in Russia

, Volume 9, Issue 11–12, pp 660–666 | Cite as

Synthesis of copper nanopowders using electron-beam evaporation at atmospheric pressure of inert gas

  • A. P. Zavjalov
  • K. V. Zobov
  • I. K. Chakin
  • V. V. Syzrantsev
  • S. P. Bardakhanov
Article

Abstract

This work is devoted to the description and analysis of the technique used to obtain copper nanopowder by substance evaporation with the help of a powerful electron beam. The method possesses the following features: high yield, the possibility of obtaining nonoxidized copper, it works at atmospheric pressure, and the possibility of varying the parameters of the powders to be obtained directly in the process of synthesis. The possibility of efficiently obtaining nonoxidized copper using a closed cycle of inert gas circulation has been implemented. Copper nanopowders of a spherical shape with a diameter from 15 to 700 nm have been obtained. The dependences of the performance and specific surface area of the powders on the parameters of the production process for various evaporation modes are obtained. The factors affecting the size of the particles to be obtained (modes of boiling and cooling and configuration of the vaporization region) are analyzed. The peculiarities of the process used to obtain copper nanopowders are revealed. This allowed us to create a system for monitoring and controlling the parameters of the process, which made it possible to increase its performance and broaden the range of varying nanopowder properties.

Keywords

Beam Power Electron Beam Evaporation Copper Vapor Aerosol Nanoparticles Substance Evaporation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Lerner and V. V. Shamanskii, “Syntesis of nanoparticles by high-power current pulses,” J. Struct. Chem. 45,Suppl., S111–S114 (2004).CrossRefGoogle Scholar
  2. 2.
    V. V. Boldyrev and E. G. Avvakumov, “Mechanochemistry of inorganic solids,” Russ. Chem. Rev. 40(10), 847–859 (1971).CrossRefGoogle Scholar
  3. 3.
    V. P. Saburov, A. N. Cherepanov, M. F. Zhukov, G. V. Galevsky, G. G. Krushenko, and V. T. Borisov, “Plasma chemical synthesis of ultrafine powders and their application for the modification of metals and alloys,” in Low-Temperature Plasma, Ed. by V. M. Fomin and A. N. Cherepanov (Nauka, Novosibirsk, 1995) [in Russian].Google Scholar
  4. 4.
    S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Nanopowders obtained by evaporating initial substances in an electron accelerator at atmospeheric pressire,” Dokl. Phys. 51(7), 353–356 (2006).CrossRefGoogle Scholar
  5. 5.
    S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator,” Mater. Sci. Eng. B 132, 204–208 (2006)CrossRefGoogle Scholar
  6. 6.
    A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, S. N. Fadeev, R. A. Salimov, S. P. Bardakhanov, V. B. Goncharov, A. P. Suknev, E. A. Paukshtis, T. V. Larina, V. I. Zaikovskii, S. V. Bogdanov, and B. S. Bal’zhinimaev, “Production of silver nano-powders by electron beam evaporation,” Elsevier. Vacuum 77(4), 485–491 (2005).CrossRefGoogle Scholar
  7. 7.
    S. P. Bardakhanov, RF Patent No. 2432231 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. P. Zavjalov
    • 1
    • 2
  • K. V. Zobov
    • 1
    • 2
  • I. K. Chakin
    • 3
  • V. V. Syzrantsev
    • 1
  • S. P. Bardakhanov
    • 1
    • 2
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations