Skip to main content
Log in

Preparation of nanostructured composite ceramic materials and products under conditions of a combination of combustion and high-temperature deformation (SHS extrusion)

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The results of studies showing the possibility of obtaining long products from composite ceramic nanomaterials by self-propagating high-temperature synthesis (SHS) extrusion have been presented, combining the combustion process of the initial components of the exothermic mixture and the high-temperature deformation of the combustion products. It is found that the production of nanoscale elements of the structure of the material is regulated by regime parameters of the technological process and a special choice of the initial composition of the initial exothermic mixture. The experimental results of studies of the microstructure and properties of the resulting nanostructured composite are discussed. The regularities of the influence of shear plastic deformation during the SHS extrusion on the microstructure and the size of the structural components of the synthesized ceramic composite have been studied in comparison with other methods: SHS without the application of external forces, free SHS compression, free SHS compression followed by quenching, and SHS pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Borovinskaya, Development Conception of Self-Propagating High-Temperature Synthesis as a Field of Scientific-Technical Progress (Territoriya, Chernogolovka, 2003), p. 178 [in Russian].

    Google Scholar 

  2. A. G. Merzhanov and A. S. Rogachev, Pure Appl. Chem. 64(7), 941 (1992).

    Article  Google Scholar 

  3. A. P. Amosov, I. P. Borovinskaya, A. G. Merzhanov, and A. E. Sychev, “The way to control a dispersed structure of self-propagating high-temperature synthesis powders: beginning from monocrystalline grains up to nanosized particles,” Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metallurg., No. 5, 9–22 (2006).

    Google Scholar 

  4. N. A. Azarenkov, A. A. Verevkin, and G. P. Kovtun, Foundations of Nanotechnologies and Nanomaterials (Kharkov, 2009) [in Russian].

    Google Scholar 

  5. Yu. S. Pogozhev, E. A. Levashov, A. E. Kudryashov, T.M. Ul’yanova, N. V. Dedov, and V. A. Matyukha, “The effect of refractory materials nanocrystalline powders onto burning, structure formation, phase composition and properties of TiC-TiAl based self-propagating high-temperature alloy,” Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metallurg., No. 5, 23–31 (2006).

    Google Scholar 

  6. I. P. Borovinskaya, T. I. Ignat’eva, V. I. Vershinnikov, O. M. Miloserdova, and V. N. Semenova, “Self-propagating high-temperature ultra- and nanodispersed titanium carbide and wolfram carbide powders,” Poroshk. Metall., No. 9/10, 3–12 (2008).

    Google Scholar 

  7. Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001) [in Russian].

  8. I. P. Borovinskaya, Pure Appl. Chem. 64(7), 919 (1992).

    Article  Google Scholar 

  9. A. G. Merzhanov and I. P. Borovinskaya, “Self-propagating high-temperature synthesis as a part of scientific technical progress,” in Development Concept of Self-Propagating High-Temperature Synthesis as a Field of Scientific Technical Progress (Territoriya, Chernogolovka, 2003), p. 14 [in Russian].

    Google Scholar 

  10. M. I. Alymov, Porous Metallurgy for Nanocrystalline Materials, Ed. by Yu. K. Kovneristyi (Nauka, Moscow, 2007) [in Russian].

  11. P. M. Bazhin, A. M. Stolin, V. A. Shcherbakov, and E. V. Zamyatkina, “Nanocomposite ceramic produced by SHS extrusion,” Dokl. Chem. 430(2), 58 (2010).

    Article  Google Scholar 

  12. A. G. Merzhanov, A. M. Stolin, V. V. Podlesov, L. M. Bu- chatskii, and T. N. Shishkina, International Patent Application PCT/SU 88/00274 1988, Publication 90/07015 (1990).

    Google Scholar 

  13. A. M. Stolin, “SHS-extrusion of long components,” Int. J. Self-Propagation High-Temp. Synth. 1(1), 135 (1992).

    Google Scholar 

  14. D. Vallauri, V. A. Shcherbakov, A. V. Phitev, and F. A. Deorsola, “Study of structure formation in TiC-TiB2-MexOy ceramics fabricated by SHS and densification,” Acta Mater. 56/6, 1380–1389 (2008).

    Article  Google Scholar 

  15. A. G. Merzhanov, I. P. Borovinskaya, V. I. Ponomarev, I. O. Khomeko, Y. V. Zanevskii, S. P. Chernenko, L. P. Smykov, and G. A. Cheremukhina, “Dynamic X-ray diffraction of phase formation during self-propagation high-temperature synthesis,” Dokl. Akad. Nauk 328, 72 (1992).

    Google Scholar 

  16. A. G. Merzhanov, E. B. Pis’menskaya, V. I. Ponomarev, and A. S. Rogachev, “Dynamic X-ray crystallography of phase transformation in synthesis of intermetallic compounds under thermal explosion conditions,” Dokl. Phys. Chem. 363(1–3), 381–384 (1998).

    Google Scholar 

  17. L. M. Buchatskii and A. M. Stolin, “Porous materials deformation under non-isothermal conditions,” Plast. Massy, No. 9, 22 (1991).

    Google Scholar 

  18. T. N. Shishkina, A. M. Stolin, and V. V. Podlesov, “The influence of SHS production methods used on the material structure formation,” Int. J. Self-Propagation High-Temp. Synth. 4(1), 35 (1995).

    Google Scholar 

  19. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Minerals Met. Mater. Soc. (JOM) 58(4), 33–39 (2006).

    Article  Google Scholar 

  20. R. Valiev, “Materials science: nanomaterial advantage,” Nature 419(6910), 887–889 (2002).

    Article  Google Scholar 

  21. V. V. Podlesov, A. V. Radugin, A. M. Stolin, and A. G. Merzhanov, “Technological basis of SHS extrusion,” Int. J. Self-Propagation High-Temp. Synth. 63(5), 525 (1992).

    Google Scholar 

  22. I. P. Borovinskoi, “Promising materials,” in Development Conception of Self-Propagating High-Temperature Synthesis as a Field of Scientific-Technical Progress (Territoriya, Chernogolovka, 2003), pp. 178–182 [in Russian].

    Google Scholar 

  23. P. M. Bazhin, A. M. Stolin, and V. V. Sarantsev, “Formability of composite nanoceramics,” Zh. Vopr. Sovr. Nauki Praktiki Univ. im. V. I. Vernadskogo, No. 43, 51–56 (2012).

    Google Scholar 

  24. S. N. Galyshev, P. M. Bazhin, A. M. Stolin, and A. E. Sychev, “The way to synthesize Ti-Al-C based metal ceramics under conditions of free self-propagating high-temperature synthesis,” Perspekt. Mater., No. 2, 81 (2010).

    Google Scholar 

  25. A. M. Stolin, P. M. Bazhin, and R. V. Khairulina, “The way to use self-propagating high-temperature synthesis extrusion for producing composite nanoceramics,” Perspekt. Mater., No. 2, 77–82 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bazhin.

Additional information

Original Russian Text © P.M. Bazhin, A.M. Stolin, M.I. Alymov, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhin, P.M., Stolin, A.M. & Alymov, M.I. Preparation of nanostructured composite ceramic materials and products under conditions of a combination of combustion and high-temperature deformation (SHS extrusion). Nanotechnol Russia 9, 583–600 (2014). https://doi.org/10.1134/S1995078014060020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014060020

Keywords

Navigation