Nanotechnologies in Russia

, Volume 9, Issue 11–12, pp 583–600 | Cite as

Preparation of nanostructured composite ceramic materials and products under conditions of a combination of combustion and high-temperature deformation (SHS extrusion)

  • P. M. Bazhin
  • A. M. Stolin
  • M. I. Alymov


The results of studies showing the possibility of obtaining long products from composite ceramic nanomaterials by self-propagating high-temperature synthesis (SHS) extrusion have been presented, combining the combustion process of the initial components of the exothermic mixture and the high-temperature deformation of the combustion products. It is found that the production of nanoscale elements of the structure of the material is regulated by regime parameters of the technological process and a special choice of the initial composition of the initial exothermic mixture. The experimental results of studies of the microstructure and properties of the resulting nanostructured composite are discussed. The regularities of the influence of shear plastic deformation during the SHS extrusion on the microstructure and the size of the structural components of the synthesized ceramic composite have been studied in comparison with other methods: SHS without the application of external forces, free SHS compression, free SHS compression followed by quenching, and SHS pressing.


Self Prop Agating High Temperature Synthesis High Temperature Deformation Extrude Material Extrude Part Press Plunger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. P. Borovinskaya, Development Conception of Self-Propagating High-Temperature Synthesis as a Field of Scientific-Technical Progress (Territoriya, Chernogolovka, 2003), p. 178 [in Russian].Google Scholar
  2. 2.
    A. G. Merzhanov and A. S. Rogachev, Pure Appl. Chem. 64(7), 941 (1992).CrossRefGoogle Scholar
  3. 3.
    A. P. Amosov, I. P. Borovinskaya, A. G. Merzhanov, and A. E. Sychev, “The way to control a dispersed structure of self-propagating high-temperature synthesis powders: beginning from monocrystalline grains up to nanosized particles,” Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metallurg., No. 5, 9–22 (2006).Google Scholar
  4. 4.
    N. A. Azarenkov, A. A. Verevkin, and G. P. Kovtun, Foundations of Nanotechnologies and Nanomaterials (Kharkov, 2009) [in Russian].Google Scholar
  5. 5.
    Yu. S. Pogozhev, E. A. Levashov, A. E. Kudryashov, T.M. Ul’yanova, N. V. Dedov, and V. A. Matyukha, “The effect of refractory materials nanocrystalline powders onto burning, structure formation, phase composition and properties of TiC-TiAl based self-propagating high-temperature alloy,” Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metallurg., No. 5, 23–31 (2006).Google Scholar
  6. 6.
    I. P. Borovinskaya, T. I. Ignat’eva, V. I. Vershinnikov, O. M. Miloserdova, and V. N. Semenova, “Self-propagating high-temperature ultra- and nanodispersed titanium carbide and wolfram carbide powders,” Poroshk. Metall., No. 9/10, 3–12 (2008).Google Scholar
  7. 7.
    Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001) [in Russian].Google Scholar
  8. 8.
    I. P. Borovinskaya, Pure Appl. Chem. 64(7), 919 (1992).CrossRefGoogle Scholar
  9. 9.
    A. G. Merzhanov and I. P. Borovinskaya, “Self-propagating high-temperature synthesis as a part of scientific technical progress,” in Development Concept of Self-Propagating High-Temperature Synthesis as a Field of Scientific Technical Progress (Territoriya, Chernogolovka, 2003), p. 14 [in Russian].Google Scholar
  10. 10.
    M. I. Alymov, Porous Metallurgy for Nanocrystalline Materials, Ed. by Yu. K. Kovneristyi (Nauka, Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    P. M. Bazhin, A. M. Stolin, V. A. Shcherbakov, and E. V. Zamyatkina, “Nanocomposite ceramic produced by SHS extrusion,” Dokl. Chem. 430(2), 58 (2010).CrossRefGoogle Scholar
  12. 12.
    A. G. Merzhanov, A. M. Stolin, V. V. Podlesov, L. M. Bu- chatskii, and T. N. Shishkina, International Patent Application PCT/SU 88/00274 1988, Publication 90/07015 (1990).Google Scholar
  13. 13.
    A. M. Stolin, “SHS-extrusion of long components,” Int. J. Self-Propagation High-Temp. Synth. 1(1), 135 (1992).Google Scholar
  14. 14.
    D. Vallauri, V. A. Shcherbakov, A. V. Phitev, and F. A. Deorsola, “Study of structure formation in TiC-TiB2-MexOy ceramics fabricated by SHS and densification,” Acta Mater. 56/6, 1380–1389 (2008).CrossRefGoogle Scholar
  15. 15.
    A. G. Merzhanov, I. P. Borovinskaya, V. I. Ponomarev, I. O. Khomeko, Y. V. Zanevskii, S. P. Chernenko, L. P. Smykov, and G. A. Cheremukhina, “Dynamic X-ray diffraction of phase formation during self-propagation high-temperature synthesis,” Dokl. Akad. Nauk 328, 72 (1992).Google Scholar
  16. 16.
    A. G. Merzhanov, E. B. Pis’menskaya, V. I. Ponomarev, and A. S. Rogachev, “Dynamic X-ray crystallography of phase transformation in synthesis of intermetallic compounds under thermal explosion conditions,” Dokl. Phys. Chem. 363(1–3), 381–384 (1998).Google Scholar
  17. 17.
    L. M. Buchatskii and A. M. Stolin, “Porous materials deformation under non-isothermal conditions,” Plast. Massy, No. 9, 22 (1991).Google Scholar
  18. 18.
    T. N. Shishkina, A. M. Stolin, and V. V. Podlesov, “The influence of SHS production methods used on the material structure formation,” Int. J. Self-Propagation High-Temp. Synth. 4(1), 35 (1995).Google Scholar
  19. 19.
    R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Minerals Met. Mater. Soc. (JOM) 58(4), 33–39 (2006).CrossRefGoogle Scholar
  20. 20.
    R. Valiev, “Materials science: nanomaterial advantage,” Nature 419(6910), 887–889 (2002).CrossRefGoogle Scholar
  21. 21.
    V. V. Podlesov, A. V. Radugin, A. M. Stolin, and A. G. Merzhanov, “Technological basis of SHS extrusion,” Int. J. Self-Propagation High-Temp. Synth. 63(5), 525 (1992).Google Scholar
  22. 22.
    I. P. Borovinskoi, “Promising materials,” in Development Conception of Self-Propagating High-Temperature Synthesis as a Field of Scientific-Technical Progress (Territoriya, Chernogolovka, 2003), pp. 178–182 [in Russian].Google Scholar
  23. 23.
    P. M. Bazhin, A. M. Stolin, and V. V. Sarantsev, “Formability of composite nanoceramics,” Zh. Vopr. Sovr. Nauki Praktiki Univ. im. V. I. Vernadskogo, No. 43, 51–56 (2012).Google Scholar
  24. 24.
    S. N. Galyshev, P. M. Bazhin, A. M. Stolin, and A. E. Sychev, “The way to synthesize Ti-Al-C based metal ceramics under conditions of free self-propagating high-temperature synthesis,” Perspekt. Mater., No. 2, 81 (2010).Google Scholar
  25. 25.
    A. M. Stolin, P. M. Bazhin, and R. V. Khairulina, “The way to use self-propagating high-temperature synthesis extrusion for producing composite nanoceramics,” Perspekt. Mater., No. 2, 77–82 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Structural Macrokinetics and Problems of MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations