Nanotechnologies in Russia

, Volume 9, Issue 7–8, pp 369–379 | Cite as

Facile preparation of aqueous fullerene C60 nanodispersions

  • S. M. Andreev
  • D. D. Purgina
  • E. N. Bashkatova
  • A. V. Garshev
  • A. V. Maerle
  • M. R. Khaitov


Aqueous solutions of the fullerene C60 (nC60) were prepared by simple mixing of the solution of C60 in N-methylpyrrolidone (MP) with deionized water or an aqueous solution of a low-molecular-weight natural substance (L-amino acids, monosaccharides, peptides, or glycerol) used as stabilizing agents (SAs) followed by exhaustive dialysis against distilled water. During dialysis, all low-molecular-weight compounds are removed through the pores and the fullerene clusters remain in the solution. The efficiency of conversion of C60 from the crystalline state to the solution approaches the quantitative value, and solutions with a C60 concentration of up to 250 mg/L can be obtained; moreover, these solutions are stable for at least 10–12 months. The formation of insoluble aggregates has been observed when basic and acidic organic compounds were used as SA. The UV-VIS spectra of solutions have a profile characteristic of nC60 solutions obtained by other well-known procedures (maxima at 220, 265, 340, and 450 nm). Mass spectra of aqueous solutions and FTIR spectra of dried nC60 samples were indicative of the possible partial hydroxylation of the fullerene. A measurement of the sizes and ξ potential of the C60 particles in solutions by the dynamic light scattering method showed that their average diameter is about 100 nm and the charge is −30 mV, whereas the electron microscopy data demonstrated that the particles have a typical size of approximately 20 nm and contain both crystalline and amorphous phases. The proposed method is promising for the preparation of solutions of endofullerenes and, probably, higher fullerenes.


Fullerene Aqueous Dispersion Fullerene Molecule Facile Preparation Stabilize Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Hoffman, “Solid C60: a new form of carbon,” Nature, No. 347, 354–356 (1990).Google Scholar
  2. 2.
    A. Bianko, T. Da Ros, M. Prato, and C. Toniolo, “Fullerene-based amino acid and peptides,” J. Pep. Sci. 4(7), 208–219 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Bosi, T. Da Ros, G. Spalluto, and M. Prato, “Fullerene derivatives: an attractive tool for biological applications,” Eur. J. Med. Chem., No. 38, 913–923 (2003).Google Scholar
  4. 4.
    D. Pantarotto, J. P. Briand, M. Prato, and A. Bianco, “Translocation of bioactive peptides across cell membranes by carbon nanotubes,” Chem. Commun., No. 1, 6–17 (2004).Google Scholar
  5. 5.
    L. B. Piotrovskii and O. I. Kiselev, Fullerens in Biology (Rostok, St. Petersburg, 2006) [in Russian].Google Scholar
  6. 6.
    J. L. Gilmore, X. Yi, L. Quan, and A. V. Kabanov, “Novel nanomaterials for clinical neuroscience,” J. Neuroimmune Pharmacol. 2(3), 83–94 (2008).CrossRefGoogle Scholar
  7. 7.
    I. Andreev, A. Petrukhina, A. Garmanova, S. Andreev, V. Romanova, P. Troshin, O. Troshina, and L. DuBuske, “Penetration of fullerene C60 derivatives through biological membranes,” Fullerenes, Nanotubes, Carbon Nanostruct., No. 16, 89–102 (2008).Google Scholar
  8. 8.
    A. Dellinger, Z. Zhou, R. Lenk, D. MacFarland, D. Conrad, and C. L. Kepley, “Fullerene nanomaterials inhibit phorbol myristate acetate-induced inflammation,” Exp. Derm. 18(12), 1079–1081 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Satoh, K. Matsuo, H. Kiriya, et al., “Inhibitory effect of a fullerene derivative, monomalonic acid C60, on nitric oxide-dependent relaxation of aortic smooth muscle,” Gen. Pharmacol. 29(3), 345–351 (1997).CrossRefGoogle Scholar
  10. 10.
    M. Roursgaard, S. S. Poulsen, C. L. Kepley, M. Hammer, G. D. Nielsen, and S. T. Larsen, “Polyhydroxylated C60 fullerene attenuates neutrophilic lung inflammation in mice,” Basic Clin. Pharmacol. Toxicol., No. 103(4), 386–388 (2008).Google Scholar
  11. 11.
    T. Baati, F. Bourasset, N. Gharbi, L. Njim, M. Abderrabba, A. Kerkeni, H. Szwarc, and F. Moussa, “The prolongation of the lifespan of rats by repeated oral administration of 60. fullerene,” Biomaterials, No. 33, 4936–4946 (2012).Google Scholar
  12. 12.
    N. G. Vengerovich, M. A. Tyunin, E. V. Antonenkova, Yu. O. Kon’shakov, A. V. Bolekhan, O. B. Zaitseva, A. N. Stukov, M. N. Boyarkin, and V. A. Popov, “Biological activity of fullerene 60 nanobiocomposites,” Immunologiya, No. 12, 161–177 (2012).Google Scholar
  13. 13.
    N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa, “60. Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity,” Nano Lett., No. 5(12), 2578–2585 (2005).Google Scholar
  14. 14.
    N. O. Mchedlov-Petrosyan, “S60 fullerene solution: colloid aspect,” Khim., Fiz. Tekhnol. Poverkhn. 1(1), 19–37 (2010).Google Scholar
  15. 15.
    N. O. Mchedlov-Petrossyan, “Fullerenes in liquid media: an unsettling intrusion into the solution chemistry,” Chem. Rev. 113, 5149–5193 (2013). DOI: 10.1021/cr3005026.CrossRefGoogle Scholar
  16. 16.
    R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, “Solubility of fullerene (C60) in a variety of solvents,” J. Phys. Chem. 97, 3379–3383 (1993).Google Scholar
  17. 17.
    V. N. Bezmel’nitsyn, A. V. Eletskii, and M. V. Okun’, “Fullerens in solutions,” Usp. Fiz. Nauk, No. 168, 1195–1120 (1998).Google Scholar
  18. 18.
    Sh. Deguchi and S. A. Mukai, “Top-down preparation of dispersions of C60 nanoparticles in organic solvents,” Chem. Lett. No. 35(4), 396–397 (2006).Google Scholar
  19. 19.
    G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky, L. A. Vashcenko, “On the production of an aqueous colloidal solution of fullerenes,” J. Chem. Soc., No. 12, 1281–1282 (1995).Google Scholar
  20. 20.
    D. V. Konarev and R. N. Lyubovskaya, “Donor-acceptor complexes and radical ionic salts based on fullerenes,” Russ. Chem. Rev., No. 68(1), 19–38 (1999).Google Scholar
  21. 21.
    V. M. Torresa, M. Posac, B. Srdjenovicc, and A. L. Simplicioa, “Solubilization of fullerene C60 in micellar solutions of different solubilizers,” Colloids Surf. B: Biointerf., No. 82, 46–53 (2011).Google Scholar
  22. 22.
    B. S. Murdianti, J. T. Damron, M. E. Hilburn, R. D. Maples, H. R. S. Koralege, S. I. Kuriyavar, and K. D. Ausman, “C60 oxide as key component of aqueous C60 colloidal suspensions,” Environ. Sci. Technol., No. 46, 7446–7453 (2012).Google Scholar
  23. 23.
    T. Andersson, K. Nilsson, M. Sundahl, G. Westman, and O. Wennerström, “C60 embedded in γ-cyclodextrin: a water-soluble fullerene,” J. Chem. Soc., Chem. Commun., No. 8, 604–605 (1992).Google Scholar
  24. 24.
    M. V. Avdeev, V. L. Aksenov, and T. V. Tropin, Models of cluster formation in solutions of fullerenes. Russ. J. Phys. Chem. A, No. 84, D. 1273–1283 (2010).Google Scholar
  25. 25.
    D. V. Konarev, A. L. Litvinov, A. Yu. Kovaltvsky, N. V. Drichko, R. N. Coppens, and R. N. Lubovskaya, “Molecular complexes of fullerene C60 with aromatic hydrocarbons: crystal structures of (TPE)2C60 and DPA·C60,” Synth. Met., Nos. 133–134, 675–677 (2003).Google Scholar
  26. 26.
    M. K. Shukla and J. Leszczynski, “Fullerene (C60) forms stable complex with nucleic acid base guanine,” Chem. Phys. Lett., No. 469, 207–209 (2009).Google Scholar
  27. 27.
    E. Oberdörster, S. Zhu, T. M. Blickley, P. McClellan-Green, and M. L. Haasch, “Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms,” Carbon, No. 44, 1112–1120 (2006).Google Scholar
  28. 28.
    R. V. Bemasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Setat, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem., No. 98, 3492–3500 (1994).Google Scholar
  29. 29.
    N-Methyl-2-Pyrrolidone. Concise International Chemical Assessment Document No. 35 (World Health Organization, 2001).Google Scholar
  30. 30.
    K. N. Semenov, N. A. Charykov, V. A. Keskinov, A. K. Piartman, A. A. Blokhin, and A. A. Kopyrin, “Solubility of light fullerenes in organic solvents,” J. Chem. Eng. Data, No. 55, 13–36 (2010).Google Scholar
  31. 31.
    A. De Leon, A. F. Jalbout, and V. A. Basiuk, “Fullerene-amino acid interactions. A theoretical study,” Chem. Phys. Lett., No. 452, 306–314 (2008).Google Scholar
  32. 32.
    N. O. Mchedlov-Petrossyan, “Fullerenes in molecular liquids. Solutions in “good” solvents: another view,” J. Mol. Liquids, No. 161, 1–12 (2011).Google Scholar
  33. 33.
    K. L. Chen, B. A. Smith, P. B. William, and D. H. Fairbrother, “Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes,” Environ. Chem., No. 7, 10–27 (2010).Google Scholar
  34. 34.
    G. V. Andrievsky, V. K. Klochkov, E. L. Karyakina, and N. O. Mchedlov-Petrossyan, “Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy,” Chem. Phys. Lett., No. 300, 392–396 (1999).Google Scholar
  35. 35.
    L. Pospíšl, M. Gál, M. Hromadová, J. Bulíćková, V. Kolivoška, J. Cvaćka, K. Nováková, L. Kavan, M. Zukalová, and L. Dunsch, “Search for the form of fullerene C(60) in aqueous medium,” Phys. Chem. Chem. Phys. 42(12), 14095–14101 (2010).CrossRefGoogle Scholar
  36. 36.
    K. L. Chen and M. Elimelech, “Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties,” Environ. Sci. Technol., No. 43, 7270–7276 (2009).Google Scholar
  37. 37.
    J. Labille, A. Masion, F. Ziarelli, J. Rose, J. Brant, F. Villieras, M. Pelletier, D. Borschneck, M. R. Wiesner, and J. Y. Bottero, “Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions,” Langmuir 19(25), 11232–11235 (2009).CrossRefGoogle Scholar
  38. 38.
    International Centre for Diffraction Data JCPDS card #44-0558.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. M. Andreev
    • 1
  • D. D. Purgina
    • 1
  • E. N. Bashkatova
    • 1
  • A. V. Garshev
    • 2
  • A. V. Maerle
    • 1
  • M. R. Khaitov
    • 1
  1. 1.National Research Center Institute of ImmunologyMoscowRussia
  2. 2.Department of Materials ScienceMoscow State UniversityMoscowRussia

Personalised recommendations