Nanotechnologies in Russia

, Volume 9, Issue 5–6, pp 288–292 | Cite as

Formation of gradients of structure, phase composition, and dislocation substructure in differentially hardened rails

  • V. E. Gromov
  • K. V. Morozov
  • Yu. F. Ivanov
  • K. V. Volkov
  • S. V. Konovalov


A layer by layer analysis of rails, differentially hardened in various modes, has been carried out using transmission electron microscopy on various scale levels. It has been shown that the differential hardening of rails is accompanied by the formation of a morphologically different structure, which is formed according to the diffusion mechanism of γ-α transformation and consisting of plate perlite grains, free ferrite grains, and grains of a ferrite-carbide mixture. The gradient character of modifications of structure, phase composition, and dislocation substructure parameters along the cross section of rail head has been established. It has been revealed that the interfaces between globular cementite particles and the matrix are the most dangerous stress concentrators.


Carbide Phase Rail Steel Interplate Distance Differential Hardening Globular Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Gromov, V. A. Berdyshev, E. V. Kozlov, et al., Gradient Structure-Phase States in Rail Steel (Nedra Commun., Moscow, 2000) [in Russian].Google Scholar
  2. 2.
    Topical Problem of Rails Manufacturing, Ed. by V. E. Gromov, et al. (Izd. Siberian State Industrial Univ., Novokuznetsk, 2001) [in Russian].Google Scholar
  3. 3.
    A. I. Borts, E. A. Shur, V. A. Reikhart, S. V. Khlyst, and A. V. Gontar’, Rail Producing Development Trends in Russia.
  4. 4.
    Ren An-chao, Ji Yu, Zhou Gui-feng, et al., “Hot deformation behavior of V-microalloys steel,” J. Iron Steel Res. Int. 17(8), 55–60 (2010).CrossRefGoogle Scholar
  5. 5.
    I. V. Volkov, V. E. Gromov, Yu. F. Ivanov, and V. A. Grishunin, The Way to Rise Fatigue Strength of Rail Steel by Electron-Beam Processing (Inter-Kuzbass, Novokuznetsk, 2013) [in Russian].Google Scholar
  6. 6.
    R. O. Olivares, C. I. Garsia, A. DeArdo, et al., “Advanced metallurgical alloy design and thermomechanical processing for rails steels for North American heavy haul use,” Wear 271, 364–373 (2011).CrossRefGoogle Scholar
  7. 7.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals (Krieger Publ., Melbourne, 1977).Google Scholar
  8. 8.
    K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretetion of Electron Diffraction Patterns (Adam Hilger Ltd., London, 1971).Google Scholar
  9. 9.
    L. M. Utevskii, Diffraction Electron Microscopy in Metal Science (Metallurgiya, Moscow, 1973) [in Russian].Google Scholar
  10. 10.
    Yu. F. Ivanov, V. V. Kovalenko, E. V. Kozlov, and V. E. Gromov, Gradient Structure-Phase States in Steels (Nauka, Novosibirsk, 2006) [in Russian].Google Scholar
  11. 11.
    V. V. Kovalenko, E. V. Kozlov, Yu. F. Ivanov, and V. E. Gromov, Physical Nature of Gradient Structure-Phase States Formation and Evolution in Steels and Alloys (LLC Poligraf, Novokuznetsk, 2009) [in Russian].Google Scholar
  12. 12.
    V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structure Levels of Solids Deformation (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  13. 13.
    V. E. Panin, Yu. V. Grinyaev, P. V. Makarov, et al., Physical Mezomechanics and Computer Simulation for Materials (Nauka, Novosibirsk, 1995), Vol. 1 [in Russian].Google Scholar
  14. 14.
    V. V. Rybin, Great Plastic Deformations and Metals Fracture (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  15. 15.
    J. D. Eshelby, “Elastic inclusions and inhomogeneities,” in Progress in Solid Mechanics, Ed. by I. N. Snedolow (1961), Vol. 2.Google Scholar
  16. 16.
    V. M. Finkel’, Physical Foundation of Fracture Deceleration (Metallurgiya, Moscow, 1977) [in Russian].Google Scholar
  17. 17.
    N. A. Koneva and E. V. Kozlov, “Nature of substructural strengthening,” Izv. Vyssh. Uchebn. Zaved. Fiz., No. 8, 3–14 (1982).Google Scholar
  18. 18.
    V. I. Vladimirov, Physical Theory of Strength and Plasticity. Point Defects. Strengthening and Recovery (Leningrad Polytech. Inst., Leningrad, 1975) [in Russian].Google Scholar
  19. 19.
    M. A. Shtremel’, Strength of Alloys, Part 1: Lattice Defects (National University of Science and Technology “MISIS”, Moscow, 1999) [in Russian].Google Scholar
  20. 20.
    Yu. F. Ivanov, E. V. Kornet, E. V. Kozlov, and V. E. Gromov, Hardened Constructional Steel: Structure and Strengthening Mechanisms (Izd. Siberian State Industrial Univ., Novokuznetsk, 2010) [in Russian].Google Scholar
  21. 21.
    V. E. Gromov, E. V. Kozlov, V. I. Bazaikin, Yu. F. Ivanov, et al., Physics and Mechanics of Drawing and Volumetric Stamping (Nedra, Moscow, 1997) [in Russian].Google Scholar
  22. 22.
    N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, “Long-range stress fields, flexion-torsion of crystalline lattice and stages of plastic deformation. Measurement methods and results,” in Proc. Int. Conf. New Methods in Deformed Solid Physics and Mechanics (National Research Tomsk State Univ., Tomsk, 1990), pp. 83–93 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. E. Gromov
    • 1
  • K. V. Morozov
    • 2
  • Yu. F. Ivanov
    • 3
    • 4
  • K. V. Volkov
    • 2
  • S. V. Konovalov
    • 1
  1. 1.Siberian State Industrial UniversityNovokuznetskRussia
  2. 2.EVRAZ Consolidated West Siberian Metallurgical PlantNovokuznetskRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia
  4. 4.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations