Nanotechnologies in Russia

, Volume 9, Issue 3–4, pp 126–135 | Cite as

Mesoporous silica particles as nanocontainers for phthalocyanine photosensitizers: estimation of efficiency in in vivo experiments

  • O. V. Dement’eva
  • M. A. Filippenko
  • M. M. Vinogradova
  • V. A. Ogarev
  • G. A. Meerovich
  • S. Sh. Karshieva
  • M. S. Belov
  • E. A. Luk’yanets
  • V. M. Rudoy


The template synthesis of mesoporous silica nanoparticles with predetermined size and porous structure is carried out. Water-soluble photosensitizer Photosens is used to study the possibility of applying such particles as containers for photosensitizers of a phthalocyanine series. In vivo experiments have shown that the application of such nanocontainers for the delivery of Photosens to a tumor makes it possible to improve the efficiency of fluorescence diagnostics and the photodynamic therapy of cancer.


Phthalocyanine Mesoporous Silica Silica Nanoparticles Photo Sensitizer MESOPOROUS Silica Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).CrossRefGoogle Scholar
  2. 2.
    J. das Neves, M. M. Amiji, M. F. Bahia, and B. Sarmento, Adv. Drug Deliv. Rev. 62, 458 (2010).CrossRefGoogle Scholar
  3. 3.
    L.-S. Wang, M.-C. Chuang, and J.-A. Annie Ho, Int. J. Nanomed. 7, 4679 (2012).Google Scholar
  4. 4.
    G. A. Hughes, Nanomed.: Nanotechnol. Biol. Med. 1, 22 (2005).Google Scholar
  5. 5.
    S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, J. Control. Release 126, 187 (2008).CrossRefGoogle Scholar
  6. 6.
    P. P. Adiseshaiah, J. B. Hall, and S. E. McNeil, WIREs Nanomed. Nanobiotechnol. 2, 99 (2009).CrossRefGoogle Scholar
  7. 7.
    C. Minelli, S. B. Lowe, and M. M. Stevens, Small 6, 2336 (2010).CrossRefGoogle Scholar
  8. 8.
    J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn, and V. S.-Y. Lin, Small 6, 1952 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Rana, A. Bajaj, R. L. Mout, and V. M. Rotello, Adv. Drug Deliv. Rev. 64, 200 (2012).CrossRefGoogle Scholar
  10. 10.
    B. C. Wilson and M. S. Patterson, Phys. Med. Biol. 53, R61 (2008).CrossRefGoogle Scholar
  11. 11.
    J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, Chem. Rev. 110, 2795 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Camerin, M. Magaraggia, M. Soncin, G. Jori, M. Moreno, I. Chambrier, M. J. Cook, and D. A. Russell, Eur. J. Cancer 46, 1910 (2010).CrossRefGoogle Scholar
  13. 13.
    Y. Cheng, J. D. Meyers, A.-M. Broome, M. E. Kenney, J. P. Basilion, and C. Burda, J. Am. Chem. Soc. 133, 2583 (2011).CrossRefGoogle Scholar
  14. 14.
    D. K. Chatterjee, L. S. Fong, and Y. Zhang, Adv. Drug Deliv. Rev. 60, 1627 (2008).CrossRefGoogle Scholar
  15. 15.
    E. S. Shibu, M. Hamada, N. Murase, and V. Biju, J. Photochem. Photobiol. C. Photochem. Rev. 15, 53 (2013).CrossRefGoogle Scholar
  16. 16.
    P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehm, and J.-O. Durand, Nanoscale 2, 1083 (2010).CrossRefGoogle Scholar
  17. 17.
    F. Figueira, J. A. S. Cavaleiro, and J. P. C. Tomé, J. Porphyrins Phthalocyanines 15, 517 (2011).CrossRefGoogle Scholar
  18. 18.
    H. S. Qian, H. C. Guo, P. C.-L. Ho, R. Mahendran, and Y. Zhang, Small 5, 2285 (2009).CrossRefGoogle Scholar
  19. 19.
    F. Wang, X. Chen, Z. Zhao, S. Tang, X. Huang, C. Lin, C. Cai, and N. Zheng, J. Mater. Chem. 21, 11244 (2011).CrossRefGoogle Scholar
  20. 20.
    B. N. Khlebtsov, E. V. Panfilova, V. A. Khanadeev, A. V. Markin, G. S. Terentyuk, V. D. Rumyantseva, A. V. Ivanov, I. P. Shilov, and N. G. Khlebtsov, Nanotech. Russ. 6(7–8), 496 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Shi, X. Zhu, Z. Zhao, W. Fang, M. Chen, Y. Huang, and X. Chen, J. Mater. Chem. B 1, 1133 (2013).CrossRefGoogle Scholar
  22. 22.
    Q. He and J. Shi, J. Mater. Chem. 21, 5845 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Vallet-Regí, F. Balas and D. Arcos, Angew. Chem., Int. Ed. 46, 7548 (2007).CrossRefGoogle Scholar
  24. 24.
    F. Tang, L. Li, and D. Chen, Adv. Mater. 24, 1504 (2012).CrossRefGoogle Scholar
  25. 25.
    R. Zhang, C. Wu, L. Tong, B. Tang, Q.-H. Xu, Langmuir 25, 10153 (2009).CrossRefGoogle Scholar
  26. 26.
    Y. Chen, Q. Yin, X. Ji, S. Zhang, H. Chen, Y. Zheng, Y. Sun, H. Qu, Z. Wang, Y. Li, X. Wang, K. Zhang, L. Zhang, and J. Shi, Biomaterials 33, 7126 (2012).CrossRefGoogle Scholar
  27. 27.
    T. Y. Ohulchanskyy, I. Roy, L. N. Goswami, Y. Chen, E. J. Bergey, R. K. Pandey, A. R. Oseroff, and P. N. Prasad, Nano Lett. 7, 2835 (2007).CrossRefGoogle Scholar
  28. 28.
    H.-L. Tu, Y.-S. Lin, H.-Y. Lin, Y. Hung, L.-W. Lo, Y.-F. Chen, and C.-Y. Mou, Adv. Mater. 21, 172 (2009).CrossRefGoogle Scholar
  29. 29.
    S.-H. Cheng, C.-H. Lee, M.-C. Chen, J. S. Souris, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, C.-T. Chen, and L.-W. Lo, J. Mater. Chem. 20, 6149 (2010).CrossRefGoogle Scholar
  30. 30.
    V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, Laser Phys. 10, 1188 (2000).Google Scholar
  31. 31.
    R. B. Viana, A. B. F. Silva, and A. S. Pimentel, Int. J. Mol. Sci. 13(7), 7980–7993 (2012).CrossRefGoogle Scholar
  32. 32.
    K. Möller, J. Kobler, and T. Bein, Adv. Funct. Mater. 17, 605 (2007).CrossRefGoogle Scholar
  33. 33.
    O. V. Dementieva, M. A. Filippenko, Ch. E. Grohmann, M. M. Vinogradova, E. A. Lukyanets, L. P. Savvina, and V. M. Rudoy, in Proc. Int. Conf. on Colloids and Nanomedicine-2012 (Amsterdam, July 15–17, 2012), p. 2.5.Google Scholar
  34. 34.
    C. Yagüe, M. Moros, V. Grazú, M. Arruebo, and J. Santamaría, Chem. Eng. J. 137, 45 (2008).CrossRefGoogle Scholar
  35. 35.
    Q. He, J. Zhang, J. Shi, Z. Zhu, L. Zhang, W. Bu, L. Guo, and Y. Chen, Biomaterials 31, 1085 (2010).CrossRefGoogle Scholar
  36. 36.
    R. Edrei, V. Gottfried, J. E. van Lier, and S. Kimel, J. Porphyrins Phthalocyanines 2, 191 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. V. Dement’eva
    • 1
  • M. A. Filippenko
    • 1
  • M. M. Vinogradova
    • 1
    • 2
  • V. A. Ogarev
    • 1
  • G. A. Meerovich
    • 3
  • S. Sh. Karshieva
    • 4
  • M. S. Belov
    • 5
  • E. A. Luk’yanets
    • 6
  • V. M. Rudoy
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Higher Chemical College of the Russian Academy of SciencesMendeleev Russian University of Chemical TechnologyMoscowRussia
  3. 3.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Blokhin Russian Cancer Research CenterRussian Academy of Medical SciencesMoscowRussia
  5. 5.Faculty of PhysicsMoscow State UniversityMoscowRussia
  6. 6.State Scientific Center “Research Institute of Organic Intermediates and Dyes,”MoscowRussia

Personalised recommendations