Nanotechnologies in Russia

, Volume 9, Issue 1–2, pp 1–14 | Cite as

Composite coatings modified with nanoparticles: Structure and properties

Article

Abstract

Results of studies of composite coatings modified with nanoparticles are described. The focus is on metal coatings prepared by cathodic deposition from electrolyte suspensions. The effect of different nanoparticles (nanodiamonds, fullerenes, carbon nanotubes, carbides, oxides, etc.) on the performance properties (microhardness, wear resistance, corrosion stability, etc.) and structure of the composite coatings is examined.

Keywords

Fullerene Wear Resistance Disperse Phase Composite Coating Nanocomposite Coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Fink and J. D. Prince, Trans. Am. Electrochem. Soc. 54, 315 (1929).Google Scholar
  2. 2.
    R. S. Saifullin, Combined Electrochemical Coatings and Materials (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  3. 3.
    R. S. Saifullin, Composite Materials and Coatings (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  4. 4.
    R. S. Saifullin, Inorganic Composite Materials (Khimiya, Moscow, 1983) [in Russian].Google Scholar
  5. 5.
    R. S. Saifullin, Physical Chemistry of Inorganic Polymeric and Composite Materials (Khimiya, Moscow, 1990) [in Russian].Google Scholar
  6. 6.
    R. S. Saifullin, Physical Chemistry of Inorganic Polymeric and Composite Materials (Ellis Horwood, London, 1992).Google Scholar
  7. 7.
    L. I. Antropov and Yu. N. Lebedinskii, Composite Electrochemical Coatings and Materials (Tekhnika, Kiev, 1986) [in Russian].Google Scholar
  8. 8.
    G. V. Gur’yanov, Electrodeposition of Wear-Resistant Composite Coatings (Shtiintsa, Chisinau, 1985) [in Russian].Google Scholar
  9. 9.
    Yu. M. Polukarov and V. V. Grinina, Zashch. Met. 11(1), 27 (1975).Google Scholar
  10. 10.
    Yu. M. Polukarov, L. I. Lyamina, and N. I. Tarasova, Elektrokhimiya 14(10), 1468 (1978).Google Scholar
  11. 11.
    Yu. M. Polukarov, L. I. Lyamina, V. V. Grinina, et al., Elektrokhimiya 14(11), 1635 (1978).Google Scholar
  12. 12.
    G. A. Chiganova and A. S. Chiganov, Zh. Prikl. Khim. 71(11), 1832 (1998).Google Scholar
  13. 13.
    V. Yu. Dolmatov, Usp. Khim. 76(4), 382 (2007).CrossRefGoogle Scholar
  14. 14.
    G. K. Burkat and V. Yu. Dolmatov, Fiz. Tverd. Tela 46(4), 685 (2004).Google Scholar
  15. 15.
    A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul’, et al., Fiz. Tverd. Tela 39(11), 1125 (2004).Google Scholar
  16. 16.
    A. D. Toropov, P. Ya. Detkov, and S. I. Chukhaeva, Gal’vanotekh. Obrab. Poverkhn. 7(3), 14 (1999).Google Scholar
  17. 17.
    L. S. Tsybul’skaya, T. V. Gaevskaya, T. M. Gubarevich, and A. P. Korzhenevskii, Gal’vanotekh. Obrab. Poverkhn. 4(1), 14 (1996).Google Scholar
  18. 18.
    Yu. V. Timoshkov, T. M. Gubarevich, T. I. Orekhovskaya, et al., Gal’vanotekh. Obrab. Poverkhn. 7(2), 20 (1999).Google Scholar
  19. 19.
    V. Yu. Dolmatov and G. K. Burkat, Sverkhtverd. Mater., No. 1, 84 (2000).Google Scholar
  20. 20.
    T. W. Jelinek, Galvanotechnik 96(1), 42 (2005).Google Scholar
  21. 21.
    T. W. Jelinek, Gal’vanotekh. Obrab. Poverkhn. 6(3), 9 (1998).Google Scholar
  22. 22.
    L. M. Yagodkina, I. D. Loginova, and L. E. Savochkina, Zh. Prikl. Khim. 71(4), 618 (1998).Google Scholar
  23. 23.
    I. G. Novotortseva and T. V. Gaevskaya, Zh. Prikl. Khim. 72(5), 789 (1999).Google Scholar
  24. 24.
    L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskii, et al., Fullerenes (Ekzamen, Moscow, 2005) [in Russian].Google Scholar
  25. 25.
    V. N. Tseluikin and O. A. Kanaf’eva, Nanotech. Russ. 6(3–4), 272 (2011).CrossRefGoogle Scholar
  26. 26.
    V. N. Tseluikin, N. D. Solov’eva, and I. F. Gun’kin, Zashch. Met. 43(4), 418 (2007).Google Scholar
  27. 27.
    V. N. Tseluikin, N. D. Solov’eva, and I. F. Gun’kin, Nanotech. Russ. 3(7–8), 456 (2008).CrossRefGoogle Scholar
  28. 28.
    L. I. Parfenova, Extended Abstract of Candidate’s Dissertation in Technical Sciences (Kazan State Technical University named after A.N. Tupolev-KAI, Kazan, 2011) [in Russian].Google Scholar
  29. 29.
    E. G. Rakov, Nanotubes and Fellerenes (Univ. kniga. Logos, Moscow, 2006) [in Russian].Google Scholar
  30. 30.
    X. H. Chen, F. Q. Cheng, S. L. Li, et al., Surf. Coat. Technol. 155(2), 274 (2002).CrossRefGoogle Scholar
  31. 31.
    J. Tan, T. Yu, B. Xu, and Q. Yao, Tribol. Lett. 21(2), 107 (2006).CrossRefGoogle Scholar
  32. 32.
    Y. S. Jeon, J. Y. Byun, and T. S. Oh, J. Phys. Chem. Solids 69(5–6), 1391 (2008).CrossRefGoogle Scholar
  33. 33.
    Arai Susumu, Fujimori Akihiro, Murai Masami, and Endo Morinobu, Mater. Lett., 62(20), 3545 (2008).CrossRefGoogle Scholar
  34. 34.
    Guo Chao, Zuo Yu, Zhao Xuhui, et al., Surf. Coat. Technol. 202(14), 3246 (2008).CrossRefGoogle Scholar
  35. 35.
    Guo Chao, Zuo Yu, Zhao Xuhui, et al., Surf. Coat. Technol. 202(14), 3385 (2008).CrossRefGoogle Scholar
  36. 36.
    A. G. Tkachev, Yu. V. Litovka, I. A. D’yakova, and O. A. Kuznetsova, Gal’vanotekh. Obrab. Poverkhn. 18(1), 17 (2010).Google Scholar
  37. 37.
    Yu. I. Golovin, Yu. V. Litovka, A. V. Shuklinov, et al., Deform. Razrush. Mater., No. 1, 31 (2011).Google Scholar
  38. 38.
    L. Kodandarama, M. Krishna, H. N. Narasimha Murthy, and S. C. Sharma, J. Mater. Eng. Perform. 20(1) (2011).Google Scholar
  39. 39.
    V. D. Zakharov, V. G. Nefedov, D. G. Korolyanchuk, et al., Fiz. Khim. Obrab. Mater., No. 1, 18 (2012).Google Scholar
  40. 40.
    P. B. Kubrak, V. B. Drozdovich, I. M. Zharskii, and V. V. Chaevskii, Gal’vanotekh. Obrab. Poverkhn. 20(2), 43 (2012).Google Scholar
  41. 41.
    T. W. Jelinek, Galvanotechnik 96(1), 46 (2003).Google Scholar
  42. 42.
    T. W. Jelinek, Galvanotechnik 95(1), 44 (2002).Google Scholar
  43. 43.
    G. Heidari, H. Tavakoli, and S. M. Mousavi Khoie, J. Mater. Eng. Perform. 19(8), 1183 (2010).CrossRefGoogle Scholar
  44. 44.
    E. A. Pavlatou, M. Stroumbouli, P. Gyftou, and N. Spyrellis, J. Appl. Electrochem. 36(4), 385 (2006).CrossRefGoogle Scholar
  45. 45.
    E. A. Pavlatou and N. Spirellis, Elektrokhimiya 44(6), 802 (2008).Google Scholar
  46. 46.
    T. W. Jelinek, Galvanotechnik 97(1), 42 (2004).Google Scholar
  47. 47.
    T. W. Jelinek, Galvanotechnik 88(1), 44 (1998).Google Scholar
  48. 48.
    S. Spanou and E. A. Pavlatou, J. Appl. Electrochem. 40(7), 1325 (2010).CrossRefGoogle Scholar
  49. 49.
    Xue Yu-Jun, Li Ji-Shun, Ma Wei, et al., J. Mater. Sci. 41(6), 1781 (2006).CrossRefGoogle Scholar
  50. 50.
    L. Benea, J. Appl. Electrochem. 39(10), 1671 (2009).CrossRefGoogle Scholar
  51. 51.
    Wei Wang, Shi Qiang Qian, and Xi Ying Zhou, J. Mater. Sci. 45(6), 1617 (2010).CrossRefGoogle Scholar
  52. 52.
    X. J. Sun and J. G. Li, Tribol. Lett. 28(3), 223 (2007).CrossRefGoogle Scholar
  53. 53.
    A. Robin and R. Q. Fratari, J. Appl. Electrochem. 37(7), 805 (2007).CrossRefGoogle Scholar
  54. 54.
    S. V. Vashchenko and Z. A. Solov’eva, Gal’vanotekh. Obrab. Poverkhn. 1(5–6), 45 (1992).Google Scholar
  55. 55.
    V. P. Isakov, A. I. Lyamkin, D. N. Nikitin, et al., Fizikokhim. Poverkhn. Zashch. Mater. 46(5), 506 (2010).Google Scholar
  56. 56.
    N. A. Polyakov, Yu. M. Polukarov, and V. N. Kudryavtsev, Fizikokhim. Poverkhn. Zashch. Mater. 46(1), 67 (2010).Google Scholar
  57. 57.
    V. Yu. Dolmatov, T. Fudjimura, G. K. Burkat, and E. A. Orlova, Sverkhtverd. Mater., No. 6, 16 (2002).Google Scholar
  58. 58.
    N. V. Mandich and J. K. Dennis, Metal Finish. 99(6), 117 (2001).CrossRefGoogle Scholar
  59. 59.
    E. G. Vinokurov, A. M. Arsenkin, K. V. Grigorovich, and V. V. Bondar’, Zashch. Met. 42(2), 221 (2006).Google Scholar
  60. 60.
    E. G. Vinokurov, A. M. Arsenkin, K. V. Grigorovich, and V. V. Bondar’, Zashch. Met. 42(3), 312 (2006).Google Scholar
  61. 61.
    V. Yu. Dolmatov, Usp. Khim. 70(7), 687 (2001).CrossRefGoogle Scholar
  62. 62.
    K. I. Tikhonov, G. K. Burkat, V. Yu. Dolmatov, and E. A. Orlova, Russ. J. Appl. Chem. 80(7), 1082 (2007).CrossRefGoogle Scholar
  63. 63.
    E. N. Lubnin, N. A. Polyakov, and Yu. M. Polukarov, Zashch. Met. 43(2), 199 (2007).Google Scholar
  64. 64.
    Yu. V. Litovka, I. A. D’yakov, O. A. Kuznetsov, et al., Gal’vanotekh. Obrab. Poverkhn. 19(4), 29 (2011).Google Scholar
  65. 65.
    T. V. Rezchikova, E. N. Kurkin, V. N. Troitskii, et al., J. Appl. Chem. 74(12), 2035 (2001).Google Scholar
  66. 66.
    Y. L. Yang, Y. D. Wang, Y. Renb, et al., Mater. Lett. 62(1), 47 (2008).CrossRefGoogle Scholar
  67. 67.
    V. N. Tseluikin, N. D. Solov’eva, and I. F. Gun’kin, Perspekt. Mater., No. 5, 82 (2007).Google Scholar
  68. 68.
    D. I. Nasonova and T. N. Vorob’eva, Gal’vanotekh. Obrab. Poverkhn. 20(2), 22 (2012).Google Scholar
  69. 69.
    I. Zamblau, S. Varvara, and L. M. Muresan, J. Mater. Sci. 46(20), 6484 (2011).CrossRefGoogle Scholar
  70. 70.
    V. V. Okulov, Galvanizing. Equipment and Technology (Globus, Moscow, 2008) [in Russian].Google Scholar
  71. 71.
    G. K. Burkat and V. Yu. Dolmatov, Gal’vanotekh. Obrab. Poverkhn. 9(2), 35 (2001).Google Scholar
  72. 72.
    B. M. Praveen, T. V. Venkatesha, Y. Arthoba Naik, and K. Prashantha, Surf. Coat. Technol. 201(12), 5836 (2007).CrossRefGoogle Scholar
  73. 73.
    A. Vlasa, S. Varvara, A. Pop, et al., J. Appl. Electrochem. 40(8), 1519 (2010).CrossRefGoogle Scholar
  74. 74.
    Liping Wang, Yan Gao, Huiwen Liu, et. al., Surf. Coat. Technol. 191(1), 1 (2005).CrossRefGoogle Scholar
  75. 75.
    V. I. Balakai, K. V. Murzenko, I. F. Byrylov, et al., Russ. J. Appl. Chem. 83(9), 1581 (2010).CrossRefGoogle Scholar
  76. 76.
    L. Shi, C. F. Sun, P. Gao, et al., Surf. Coat. Technol. 200(16–17), 4870 (2006).CrossRefGoogle Scholar
  77. 77.
    V. N. Tseluikin, O. G. Nevernaya, and G. V. Tseluikina, Inorg. Mater.: Appl. Res. 2(5), 521 (2011).CrossRefGoogle Scholar
  78. 78.
    G. K. Burkat and V. Yu. Dolmatov, Gal’vanotekh. Obrab. Poverkhn. 10(2), 17 (2002).Google Scholar
  79. 79.
    S. A. Gavrilov and A. N. Belov, Electrochemical Processes in Microand Nanoelectronics (Vysshee obrazovanie, Moscow, 2009) [in Russian].Google Scholar
  80. 80.
    V. I. Chernenko, L. A. Snezhko, and I. I. Papanova, Coating Production by Anodic Spark-Electrolysis (Khimiya, Leningrad, 1991) [in Russian].Google Scholar
  81. 81.
    V. N. Malyshev and K. M. Zorin, Appl. Surf. Sci. 254(5), 1511 (2007).CrossRefGoogle Scholar
  82. 82.
    R. Arrabal, E. Matykina, F. Viejo, et al., Appl. Surf. Sci. 254(21), 6937 (2008).CrossRefGoogle Scholar
  83. 83.
    E. Matykina, R. Arrabal, F. Monfort, et al., Appl. Surf. Sci. 255(5), 2830 (2008).CrossRefGoogle Scholar
  84. 84.
    M. S. Vasil’eva, V. S. Rudnev, I. A. Korotenko, and A. Yu. Ustinov, Fizikokhim. Poverkhn. Zashch. Mater. 46(5), 521 (2010).Google Scholar
  85. 85.
    Electrolytic Metallurgy, Ed. by A. M. Ginberg, A. F. Ivanov, and L. L. Kravchenko (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar
  86. 86.
    T. V. Elinek, Gal’vanotekh. Obrab. Poverkhn. 8(2), 9 (2000).Google Scholar
  87. 87.
    S. Faraji, A. A. Rahim, N. Mohamed, and C. S. Sipaut, J. Coat. Technol. Res. 9(1), 115 (2012).CrossRefGoogle Scholar
  88. 88.
    X. Hu, P. Jiang, J. Wan, et al., J. Coat. Technol. Res. 6(2), 275 (2009).CrossRefGoogle Scholar
  89. 89.
    M. Mohammadi and M. Ghorbani, J. Coat. Technol. Res. 8(4), 527 (2011).CrossRefGoogle Scholar
  90. 90.
    X. Liu, C. Wu, and X. Wang, J. Coat. Technol. Res. 7(5), 659 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Engels Technological Institute (Affiliated Branch)Saratov State Technical UniversityEngels, Saratov oblastRussia

Personalised recommendations