Nanotechnologies in Russia

, Volume 9, Issue 1–2, pp 31–37 | Cite as

Modeling of the substrate topography upon nanosized profiling by focused ion beams

  • O. A. Ageev
  • A. M. Alekseev
  • A. V. Vnukova
  • A. L. Gromov
  • A. S. Kolomiytsev
  • B. G. Konoplev
Article

Abstract

This paper presents the results of a mathematical model developed for calculating two-dimensional topography of the substrate surface when etching by a focused ion beam (FIB). A simulation of the two-dimensional relief of the substrate when irradiated by the FIB was carried out. An algorithm and software were developed making it possible to forecast the parameters of the surface relief depending on the characteristics of the ion beam and scanning system. The algorithm takes into account the redeposition of the sputtered material. The adequacy of the model is confirmed by a comparison with the results of experimental investigations.

Keywords

Surface Relief Solid State Structure Substrate Topography Maskless Lithography Charge Particle Optic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Luchinin, Nanotechnologies: Physics, Processes, Diagnostics, Devices (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    L. A. Giannuzzi and F. A. Stevie, Introdution to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, New York, 2004).Google Scholar
  3. 3.
    R. Menon, A. Patel, D. Gil, and H. Smith, “Maskless Lithography,” Mater. Today, 26–33 (Feb. 2005).Google Scholar
  4. 4.
    H. Kim, G. Hobler, and A. Lugstein, “Simulation of Ion Beam Induced Micro/Nano Fabrication,” J. Micromech. Microeng. 17, 1178–1183, (2007).CrossRefGoogle Scholar
  5. 5.
    A. Tseng, I. Insua, J. Park, and C. Chen, “Milling yield estimation in focused ion beam milling of two-layer substrates,” J. Micromech. Microeng., No. 15, 20–28 (2005).Google Scholar
  6. 6.
    J. Han, H. Lee, B. Min, and S. Lee, “Prediction of nanopattern topography using two-dimensional focused ion beam milling with beam irradiation intervals,” Microelectron. Eng., No. 87, 1–9 (2010).Google Scholar
  7. 7.
    B. G. Konoplev, O. A. Ageev, V. A. Smirnov, A. S. Kolomiitsev, and N. I. Serbu, “Probe modification for scanning probe microscopy by the focused ion beam method,” Russ. Microelectron. 41(1), 41–50 (2012).CrossRefGoogle Scholar
  8. 8.
    Handbook of Charged Particle Optics, Ed. by J. Orloff, 2nd ed. (CRC Press, New York, 2009).Google Scholar
  9. 9.
    O. A. Ageev, A. S. Kolomiitsev, and B. G. Konoplev, “The way to investigate focused ion beams interaction with a substrate,” Izv. Vyssh. Uchebn. Zaved. Elektron., No. 3 (89), 20–25 (2011).Google Scholar
  10. 10.
    Plasma Processing for VLSI, Edited by N. G. Einspruch and D. M. Brown (Acad. Press, New York, 1989).Google Scholar
  11. 11.
    O. A. Ageev, A. S. Kolomiytsev, and B. G. Konoplev, “Formation of nanosize structures on a silicon substrate by method of focused ion beams,” Semiconductors 45(13), 89–92 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. A. Ageev
    • 1
  • A. M. Alekseev
    • 2
  • A. V. Vnukova
    • 1
  • A. L. Gromov
    • 1
  • A. S. Kolomiytsev
    • 1
  • B. G. Konoplev
    • 1
  1. 1.Department of Electronics and InstrumentationSouthern Federal UniversityTaganrogRussia
  2. 2.School of Physics and Astronomy, Kelvin Nanocharacterisation CentreUniversity of GlasgowGlasgowUK

Personalised recommendations