Advertisement

Nanotechnologies in Russia

, Volume 8, Issue 11–12, pp 685–699 | Cite as

Fluorescent quantum dots: Synthesis, modification, and application in immunoassays

Article

Abstract

Fluorescent semiconductor nanocrystals (called quantum dots (QDs)) possess unique optic properties which make them promising material in various applications. In particular, QDs demonstrate narrow florescence peaks with a location depending on the size of the nanocrystal, a wide absorption spectra, and high photostability. The current review is devoted to the synthesis and modification of semiconductor QDs used as fluorescent probes in bioanalysis. Such QDs should exhibit bright fluorescence, form stable aqueous colloid solutions at various pH, and have functional groups available for covalent binding with biomolecules. Major steps of QD preparation that meet these requirements are presented: synthesis of cores in organic solvent, methods of coating cores with shells of higher band-gap semiconductors, and ways of QD hydrophilization. Particular attention has been given to the preparation and modification of QDs using stable and available reagents. Advantages of QDs over organic dyes and recent advances in the application of QDs as fluorescent probes in immunochemical assays have been also considered.

Keywords

Maleic Anhydride Amphiphilic Polymer CdSe Nanocrystals Cadmium Selenide Jeffamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).Google Scholar
  2. 2.
    Handbook of Nanophysics: Nanoparticles and Quantum Dots, Ed. by K. D. Sattler (CRC Press, 2011).Google Scholar
  3. 3.
    V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).Google Scholar
  4. 4.
    C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nature Nanotechnol. 7, 335–339 (2012).Google Scholar
  5. 5.
    M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524 nm) laser,” Appl. Phys. Lett. 98, 221104–3 (2011).Google Scholar
  6. 6.
    Quantum Dots: Research, Technology and Applications, Ed. by R. F. Knoss (Nova Sci. Publ., New York, 2008).Google Scholar
  7. 7.
    N. Zhao, T. P. Osedach, L.-Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, and V. Bulovic, “Colloidal PbS quantum dot solar cells with high fill factor,” ACS Nano 4, 3743–3752 (2010).Google Scholar
  8. 8.
    J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94, 153115–3 (2009).Google Scholar
  9. 9.
    N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1513 (2002).Google Scholar
  10. 10.
    G. T. Hermanson, Bioconjugate Techniques, 2nd ed. (Acad. Press, 2008).Google Scholar
  11. 11.
    V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, “Fluorescent semiconductor crystals in biology and medicine,” Ross. Nanotekhnol. 2(1–2), 160–173 (2007).Google Scholar
  12. 12.
    J. Drbohlavova, V. Adam, R. Kizek, and J. Hubalek, “Quantum dots — characterization, preparation and usage in biological systems,” Int. J. Mol. Sci. 10, 656–673 (2009).Google Scholar
  13. 13.
    W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016–2018 (1998).Google Scholar
  14. 14.
    W. W. Yu, “Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications,” Expert Opin. Biol. Ther. 8, 1571–1581 (2008).Google Scholar
  15. 15.
    R. Gill, M. Zayats, and I. Willner, “Semiconductor quantum dots for bioanalysis,” Angew. Chem. Int. Ed. 47, 7602–7625 (2008).Google Scholar
  16. 16.
    Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications, Ed. by A. L. Rogach (Springer, NewYork, 2008).Google Scholar
  17. 17.
    X. Gao, W. C. W. Chan, and S. Nie, “Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding,” Biomed. Opt. 7, 532–537 (2002).Google Scholar
  18. 18.
    F. Zan and J. Ren, “Significant improvement in photoluminescence of ZnSe(S) alloyed quantum dots prepared in high pH solution,” Luminescence 25(5), 378–383 (2010).Google Scholar
  19. 19.
    J. Aldana, Y. A. Wang, and X. Peng, “Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols,” J. Am. Chem. Soc. 123, 8844–8850 (2001).Google Scholar
  20. 20.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).Google Scholar
  21. 21.
    C. R. Bullen and P. Mulvaney, “Nucleation and growth kinetics of CdSe nanocrystals in octadecene,” Nano Lett. 4, 2303–2307 (2004).Google Scholar
  22. 22.
    J. Jasieniak, C. Bullen, J. V. Embden, and P. Mulvaney, “Phosphine-free synthesis of CdSe nanocrystals,” J. Phys. Chem. B 109, 20665–20668 (2005).Google Scholar
  23. 23.
    X. Peng, J. Wickham, and A. P. Alivisatos, Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc. 120, 5343–5344 (1998).Google Scholar
  24. 24.
    Q. Dai, D. Li, H. Chen, S. Kan, H. Li, S. Gao, Y. Hou, B. Liu, and G. Zou, “Colloidal CdSe nanocrystals synthesized in Noncoordinating Solvents with the addition of a secondary ligand: exceptional growth kinetics,” J. Phys. Chem. B 110, 16508–16513 (2006).Google Scholar
  25. 25.
    D. L. Nida, N. Nitin, W. W. Yu, V. L. Colvin, and R. Richards-Kortum, “Photostability of quantum dots with amphiphilic polymer-based passivation strategies,” Nanotechnology 19, 035701–6 (2008).Google Scholar
  26. 26.
    E. L. Bentzen, I. D. Tomlinson, J. Mason, P. Gresch, M. R. Warnement, D. Wright, E. Sanders-Bush, R. Blakely, and S. J. Rosenthal, “Surface modification to reduce nonspecific binding of quantum dots in live cell assays,” Bioconjugate Chem. 16, 1488–1494 (2005).Google Scholar
  27. 27.
    W. W. Yu, E. Chang, J. C. Falkner, J. Y. Zhang, A. M. Al-Somali, C. M. Sayes, J. Johns, R. Drezek, and V. L. Colvin, “Forming biocompatible and nonag-gregated nanocrystals in water using amphiphilic polymers,” J. Am. Chem. Soc. 129, 2871–2879 (2007).Google Scholar
  28. 28.
    J. H. Adair, T. Li, T. Kido, K. Havey, J. Moon, J. Mecholsky, A. Morrone, D. R. Talham, M. H. Ludwig, and L. Wang, “Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles,” Mater. Sci. Eng. R 23, 139–242 (1998).Google Scholar
  29. 29.
    T. Trindade, P. O’Brien, and N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater. 13, 3843–3858 (2001).Google Scholar
  30. 30.
    L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem. 90, 2555–2560 (1986).Google Scholar
  31. 31.
    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).Google Scholar
  32. 32.
    L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith, and J. M. Yarrison-Rice, “Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires,” Appl. Phys. Lett. 89, 053119-3 (2006).Google Scholar
  33. 33.
    B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In Vivo Imaging of quantum dots encapsulated in phospholipid micelles,” Science 298, 1759–1762 (2002).Google Scholar
  34. 34.
    J. K. Jaiswal, H. Mattoussi, M. J. Matthew, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechn. 21, 47–51 (2003).Google Scholar
  35. 35.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nature Meth. 5, 763–775 (2008).Google Scholar
  36. 36.
    W. C. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, “Luminescent quantum dots for multiplexed biological detection and imaging,” Curr. Opin. Biotechn. 13, 40–46 (2002).Google Scholar
  37. 37.
  38. 38.
    S.-L. Liu, Z.-L. Zhang, E.-Z. Sun, J. Peng, M. Xie, Z.-Q. Tian, Y. Lin, and D.-W. Pang, “Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking,” Biomaterials 32, 7616–7624 (2011).Google Scholar
  39. 39.
    A. Mansson, M. Sundberg, M. Balaz, R. Bunk, I. A. Nicholls, P. Omling, S. Tagerud, and L. Montelius, “In vitro sliding of actin filaments labelled with single quantum dots,” Biochem. Biophys. Res. Commun. 314, 529–534 (2004).Google Scholar
  40. 40.
    M. Friedrich, R. Nozadze, Q. Gan, M. Zelman-Femiak, V. Ermolayev, T. U. Wagner, and G. S. Harms, “Detection of single quantumdots in model organisms with sheet illumination microscopy,” Biochem. Biophys. Res. Commun. 390, 722–727 (2009).Google Scholar
  41. 41.
    I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Mater. 4, 435–446 (2005).Google Scholar
  42. 42.
    P. Reiss, M. Protière, and L. Li, “Core/shell semiconductor nanocrystals,” Small 5, 154–168 (2009).Google Scholar
  43. 43.
    S. Zhang, J. Yu, X. Li, and W. Tian, “Photoluminescence properties of mercaptocarboxylic acid-stabilized CdSe nanoparticles covered with polyelectrolyte,” Nanotechnology 15, 1108–1112 (2004).Google Scholar
  44. 44.
    A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, and H. Weller, “Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals.” J. Phys. Chem. B 103, 3065–3069 (1999).Google Scholar
  45. 45.
    N. Piven, A. S. Susha, M. Doblinger, and A. L. Rogach, “Aqueous synthesis of alloyed CdSexTe1 − x nanocrystals, ” J. Phys. Chem. C 112, 15253–15259 (2008).Google Scholar
  46. 46.
    W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348, 781–786 (2006).Google Scholar
  47. 47.
    C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).Google Scholar
  48. 48.
    R. K. Capek, I. Moreels, K. Lambert, D. De. Muynck, Q. Zhao, A. V. Tomme, F. Vanhaecke, and Z. Hens, “Optical properties of zincblende cadmium selenide quantum dots,” J. Phys. Chem. C 114, 6371–6376 (2010).Google Scholar
  49. 49.
    L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Lett. 1, 333–337 (2001).Google Scholar
  50. 50.
    W. W. Yu and X. Peng, “Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed. 41, 2368–2371 (2002).Google Scholar
  51. 51.
    E. M. Boatman, G. C. Lisensky, and K. J. Nordell, “A safer, easier, faster synthesis for CdSe quantum dot nanocrystals,” J. Chem. Ed. 82, 1697–1699 (2005).Google Scholar
  52. 52.
    J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, and T. Hyeon, “Generalized and facile synthesis of semiconducting metal sulfide nanocrystals,” J. Am. Chem. Soc. 125, 11100–11105 (2003).Google Scholar
  53. 53.
    J.-H. Liu, J.-B. Fan, Z. Gu, J. Cui, X.-B. Xu, Z.-W. Liang, S.-L. Luo, and M.-Q. Zhu, “Green chemistry for large-scale synthesis of semiconductor quantum dots,” Langmuir 24, 5241–5244 (2008).Google Scholar
  54. 54.
    G. G. Yordanova, C. D. Dushkina, and E. Adachi, “Early time ripening during the growth of CdSe nanocrystals in liquid paraffin,” Colloids Surf. A: Physicochem. Eng. Asp. 316, 37–45 (2008).Google Scholar
  55. 55.
    G. G. Yordanov, H. Yoshimura, and C. D. Dushkin, “Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix,” Colloids Surf. A: Physicochem. Eng. Asp. 322, 177–182 (2008).Google Scholar
  56. 56.
    C.-Q. Zhu, P. Wang, X. Wang, and Y. Li, “Facile phosphine-free synthesis of CdSe/ZnS Core/Shell nanocrystals without precursor injection,” Nanoscale Res. Lett. 3, 213–220 (2008).Google Scholar
  57. 57.
    Y. A. Yang, H. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. Int. Ed. 44, 6712–6715 (2005).Google Scholar
  58. 58.
    Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126, 14336–14337 (2004).Google Scholar
  59. 59.
    M. B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine, and M. Chergui, “Synthesis of high quality zinc blende CdSe nanocrystals,” J. Phys. Chem. B 109, 10533–10537 (2005).Google Scholar
  60. 60.
    S. J. Lim, B. Chon, T. Joo, and S. K. Shin, “Synthesis and sharacterization of zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water,” J. Phys. Chem. C 112, 1744–1747 (2008).Google Scholar
  61. 61.
    M. Henini, Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonica and Electronics (Elsevier, 2008).Google Scholar
  62. 62.
    C. Bullen, J. van Embden, J. Jasieniak, J. E. Cosgriff, R. J. Mulder, E. Rizzardo, M. Gu, and C. L. Raston, “High activity phosphine-free selenium precursor solution for semiconductor nanocrystal growth,” Chem. Mater. 22, 4135–4143 (2010).Google Scholar
  63. 63.
    I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3, 3023–3030 (2009).Google Scholar
  64. 64.
    I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan, and Z. Hens, “Composition and size-dependent extinction coeffcient of colloidal PbSe quantum dots,” Chem. Mater. 19, 6101–6106 (2007).Google Scholar
  65. 65.
    M. Booth, A. P. Brown, S. D. Evans, and K. Critchley, “Determining the concentration of CuInS2 quantum dots from the size-dependent molar extinction coefficient,” Chem. Mater. 24, 2064–2070 (2012).Google Scholar
  66. 66.
    M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller, and U. Resch-Genger, “Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties,” Anal. Chem. 81, 6285–6294 (2009).Google Scholar
  67. 67.
    Z. Yu, L. Guo, H. Du, T. Krauss, and J. Silcox, “Shell distribution on colloidal CdSe/ZnS quantum dots,” Nano Lett. 5, 565–570 (2005).Google Scholar
  68. 68.
    I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, and H. Weller, “One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “greener” chemical approaches,” J. Phys. Chem. B 107, 7454–7462.Google Scholar
  69. 69.
    D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture,” Nano Lett. 1, 207–211 (2001).Google Scholar
  70. 70.
    R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127, 7480–7488 (2005).Google Scholar
  71. 71.
    X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).Google Scholar
  72. 72.
    M. Protiere and P. Reiss, “Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission,” Nanoscale Res. Lett. 1, 62–67 (2006).Google Scholar
  73. 73.
    X. Xia, Z. Liu, G. Du, Y. Li, and M. Ma, “Structural evolution and photoluminescence of zinc-blende CdSe-blende CdSe/ZnS nanocrystals,” J. Phys. Chem. C 114, 13414–13420 (2010).Google Scholar
  74. 74.
    M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals,” J. Phys. Chem. 100, 468–471 (1996).Google Scholar
  75. 75.
    C. J. Lin, R. A. Sperling, J. K. Li, T.-Y. Yang, P.-Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4, 334–341 (2008).Google Scholar
  76. 76.
    P. Reiss, J. Bleuse, and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett. 2, 781–784 (2002).Google Scholar
  77. 77.
    E. S. Speranskaya, V. V. Goftman, A. O. Dmitrieko, V. P. Dmitrinko, T. A. Akmaeva, and I. Yu. Goryacheva, “The way to synthesize hydrophobic and hydrophilic quantum dots nuclei-shell,” Izv. Saratov. Univ. Ser. Khim. Biol. Ekol. 12(4), 3–10 (2012).Google Scholar
  78. 78.
    B. Blackman, D. Battaglia, and X. Peng, “Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth,” Chem. Mater. 20, 4847–4853 (2008).Google Scholar
  79. 79.
    B. Blackman, D. M. Battaglia, T. D. Mishima, M. B. Johnson, and X. Peng, “Control of the morphology of complex semiconductor nanocrystals with a type II heterojunction, dots vs peanuts, by thermal cycling,” Chem. Mater. 19, 3815–3821 (2007).Google Scholar
  80. 80.
    D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22, 1437–1444 (2010).Google Scholar
  81. 81.
    W. Zhang, G. Chen, J. Wang, B.-Ce. Ye, and X. Zhong, “Design and synthesis of highly luminescent nearinfrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/sell quntum dots,” Inorg. Chem. 48, 9723–9731 (2009).Google Scholar
  82. 82.
    E. E. Lees, T.-L. Nguyen, A. H. A. Clayton, and P. Mulvaney, “The preparation of colloidally stable, water-soluble, biocompatible semiconductor nanocrystals with a small hydrodynamic diameter,” ACS Nano 3, 1121–1128 (2009)Google Scholar
  83. 83.
    D. M. Willard, L. L. Carillo, J. Jung, and A. V. Orden, “CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay,” Nano Lett. 1, 469–474 (2001).Google Scholar
  84. 84.
    G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger, “Programmed assembly of DNA functionalized quantum dots,” J. Am. Chem. Soc. 121, 8122–8123 (1999).Google Scholar
  85. 85.
    H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe/ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150 (2000).Google Scholar
  86. 86.
    E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, and G. P. Anderson, “Avidin: a natural bridge for quantum dot-antibody conjugates,” J. Am. Chem. Soc. 124, 6378–6382 (2002).Google Scholar
  87. 87.
    H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, and H. Mattoussi, “Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores,” J. Am. Chem. Soc. 127, 3870–3878 (2005).Google Scholar
  88. 88.
    B. C. Mei, K. Susumu, I. L. Medintz, J. B. Delehanty, T. J. Mountziaris, and H. Mattoussi, “Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability,” J. Mater. Chem. 18, 4949–4958 (2008).Google Scholar
  89. 89.
    K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, “Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands,” J. Am. Chem. Soc. 129, 13987–13996 (2007).Google Scholar
  90. 90.
    X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969–976 (2004).Google Scholar
  91. 91.
    C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4, 334–341 (2008).Google Scholar
  92. 92.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile, and W. J. Parak, “Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals,” Nano Lett. 4, 703–707 (2004).Google Scholar
  93. 93.
    R. Di. Corato, A. Quarta, P. Piacenza, A. Ragusa, A. Figuerola, R. Buonsanti, R. Cingolani, L. Manna, and T. Pellegrino, “Water solubilization of hydrophobic nanocrystals by means of poly(maleic anhydridealt-1-octadecene),” J. Mater. Chem. 18, 1991–1996 (2008).Google Scholar
  94. 94.
    K.-T. Yong, R. Hu, I. Roy, H. Ding, L. A. Vathy, E. J. Bergey, M. Mizuma, A. Maitra, and N. P. Prasad, “Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods,” ACS Appl. Mater. Interfaces 1, 710–719 (2009).Google Scholar
  95. 95.
    R. A. Sperling, T. Pellegrino, J. K. Li, W. H. Chang, and W. J. Parak, “Electrophoretic separation of nanoparticles with a discrete number of functional groups,” Adv. Funct. Mater. 16, 943–948 (2006).Google Scholar
  96. 96.
    M. T. Fernandez-Arguelles, A. Yakovlev, R. A. Sperling, C. Luccardini, S. Gaillard, A. Sanz Medel, J.-M. Mallet, J.-C. Brochon, A. Feltz, M. Oheim, and W. J. Parak, “Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes,” Nano Lett. 7(9), 2613–2617 (2007).Google Scholar
  97. 97.
    L. M. Bronstein, E. V. Shtykova, A. Malyutin, J. C. Dyke, E. Gunn, X. Gao, B. Stein, P. V. Konarev, B. Dragnea, and D. I. Svergun, “Hydrophilization of magnetic nanoparticles with modified alternating copolymers. Part 1: the influence of the grafting,” J. Phys. Chem. C 114, 21900–21907 (2010).Google Scholar
  98. 98.
    W. Liu, M. Howarth, A. Greytak, Y. Zheng, D. Nocera, A. Ting, and M. Bawendi, “Compact biocompatible quantum dots functionalized for cellular imaging,” J. Am. Chem. Soc. 130, 1274–1284 (2008).Google Scholar
  99. 99.
    Y. Kang, Y.-H. Seo, and C. Lee, “Synthesis and conductivity of PEGME branched poly(ethylene-altmaleimide) based solid polymer electrolyte,” Bull. Korean Chem. Soc. 21, 241–244 (2000).Google Scholar
  100. 100.
    G. H. Hu and J. T. Lindt, “Amidification of poly(styrene-co-maleic anhydride) with amines in tetrahydrofuran solution: a kinetic study,” Polymer Bull. 29, 357–363 (1992).Google Scholar
  101. 101.
    O. G. Atici, A. Akar, and R. Rahimian, “Modification of poly(maleic anhydride-co-styrene) with hydroxyl containing compounds,” Turk. J. Chem. 25, 259–266 (2001).Google Scholar
  102. 102.
    W. W. Yu, E. Chang, C. M. Sayes, R. Drezek, and V. L. Colvin, “Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer,” Nanotechnology 17, 4483–4487 (2006).Google Scholar
  103. 103.
    X. Gao, “Molecular profiling of prostate cancer specimens using multicolor quantum dots,” Award Number: W81XWH-07-1-0117 (Prepared for: U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, 2009).Google Scholar
  104. 104.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).Google Scholar
  105. 105.
    D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silicacoated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B 105, 8861–8871 (2001).Google Scholar
  106. 106.
    S. G. Ding, J. X. Chen, H. Y. Jiang, J. He, W. M. Shi, W. S. Zhao, and J. Z. Shen, “Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue,” J. Agric. Food Chem. 54, 6139–6142 (2006).Google Scholar
  107. 107.
    J. X. Chen, X. Fei, H. Y. Jiang, Y. Hou, Q. X. Rao, P.G. Guo, and S. G. Ding, “A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue,” Food Chem. 113, 1197–1201 (2009).Google Scholar
  108. 108.
    Y. P. Chen, B. A. Ning, N. Liu, Y. Feng, Z. Liu, X. Y. Liu, and Z. X. Gao, “A rapid and sensitive fluoroimmunoassay based on quantum dot for the detection of chlorpyrifos residue in drinking water,” J. Environ. Sci. Health B 45, 508–515 (2010).Google Scholar
  109. 109.
    E. Tully, S. Hearty, P. Leonard, and R. O’Kennedy, “The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins,” Int. J. Biol. Macromolec. 39, 127–134 (2006).Google Scholar
  110. 110.
    C. F. Peng, Z. K. Li, Y. Y. Zhu, W. Chen, Y. Yuan, L. Q. Liu, Q. S. Li, D. G. Xu, R. R. Qiao, L. Wang, S. F. Zhu, Z. G. Jin, and C. L. Xu, “Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes,” Biosens. Bioelectron. 24, 3657–3662 (2009).Google Scholar
  111. 111.
    X. L. Wang, G. H. Tao, and Y. H. Meng, “A novel CdSe/CdS quantum dot-based competitive fluoroimmunoassay for the detection of clenbuterol residue in pig urine using magnetic core/shell Fe3O4/Au nanoparticles as a solid carrier,” Anal. Sci. 25, 1409–1413 (2009).Google Scholar
  112. 112.
    L. Trapiella-Alfonso, J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel, “Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk,” Biosens. Bioelectron. 26, 4753–4759 (2011).Google Scholar
  113. 113.
    N. V. Beloglazova, E. S. Speranskaya, S. De Saeger, S. Abé, and I. Yu. Goryacheva, “Quantum dot based rapid tests for zearalenone detection,” Anal. Bioanal. Chem. 403, 3013–3024 (2012).Google Scholar
  114. 114.
    H. A. Li, Z. J. Cao, Y. H. Zhang, C. W. Lau, and J. Z. Lu, “Combination of quantum dot fluorescence with enzymechemiluminescence for multiplexed detection of lung cancer biomarkers,” Anal. Meth. 2, 1236–1242 (2010).Google Scholar
  115. 115.
    Q. Ma, C. Wang, and X. G. Su, “Synthesis and application of quantum dot-tagged fluorescent micro-beads,” J. Nanosci. Nanotech. 8, 1138–1149 (2008).Google Scholar
  116. 116.
    K. Pinwattana, J. Wang, C. T. Lin, H. Wu, D. Du, Y. Lin, and O. Chailapakul, “CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin,” Biosens. Bioelectron. 26, 1109–1113 (2010).Google Scholar
  117. 117.
    R. Thurer, T. Vigassy, M. Hirayama, J. Wang, E. Bakker, and E. Pretsch, “Potentiometric Immunoassay with quantum dot labels,” Anal. Chem. 79, 5107 (2007).Google Scholar
  118. 118.
    Z. Zou, D. Du, J. Wang, J. N. Smith, C. Timchalk, Y. Li, and Y. Lin, “Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos,” Anal. Chem. 82, 5125–5133 (2010).Google Scholar
  119. 119.
    Z. Li, Y. Wang, J. Wang, Z. Tang, J. G. Pounds, and Y. Lin, “Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip,” Anal. Chem. 82, 7008–7014 (2010).Google Scholar
  120. 120.
    H. Yang, D. Li, R. He, Q. Guo, K. Wang, X. Zhang, P. Huang, and D. Cui, “A novel quantum dots-based point of care test for syphilis,” Nanoscale Res. Lett. 5, 875–881 (2010).Google Scholar
  121. 121.
    Y. Bai, C. Tian, X. Wei, Y. Wang, D. Wang, and X. Shi, “A sensitive lateral flow test strip based on silica nanoparticle/CdTe quantum dot composite reporter probes,” RSC Adv. 2, 1778–1781 (2012).Google Scholar
  122. 122.
    N. V. Beloglazova, I. Y. Goryacheva, R. Niessner, and D. Knopp, “A comparison of horseradish peroxidase, gold nanoparticles and quantum dots as labels in non-instrumental gel-based immunoassay,” Microchim. Acta 175, 361–367 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia

Personalised recommendations