Skip to main content
Log in

Structure of polylactide-modified silicasol nanocomposites based on thermodynamically compatible components

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The possibility of implementing entropic mixing for preparing nanocomposites based on thermodynamically compatible components was studied in this work. Polylactide was used as matrix polymer; molecular silicasols with modified surface were employed as a filler. The shell hydrophile of these particles decreases interfacial tension and prevents their aggregation in the bulk of the nanocomposite. A preliminary assessment of the thermodynamic compatibility of polylactide with the selected type of molecular silicasols was performed. The structure of obtained composites was studied by small-angle X-ray scattering. The necessity of modifying the nanoparticle surface by groups compatible with the matrix polymer, which makes it possible to prepare a composite where all filler is dispersed within the matrix to the nanoscale level without using supplementary dispersion techniques, was shown in the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Polymer Nanocomposites, Ed. by Yiu-Wing and Yu. Zhong-Zhen (Woodhead Publ., Boston, New York, Washington, 2006).

    Google Scholar 

  2. G. Cao and Y. Wang, Nanostructures and Nanomaterials. Synthesis, Properties and Applications (Word Sci., 2011).

    Book  Google Scholar 

  3. B. D. Summ and N. I. Ivanova, “Fields and methods of colloid chemistry in nanochemistry,” Usp. Khim. 69(11), 995–1008 (2000).

    Article  Google Scholar 

  4. M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. V. H. Horn, Z. Guan, G. Chen, and R. S. Krishnan, “General strategies for nanoparticle dispersion,” Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  5. A. V. Bystrova, N. V. Voronina, N. V. Gaevoi, E. V. Getmanova, V. M. Meshkov, O. B. Gorbatsevich, A. M. Muzafarov, A. N. Ozerin, E. V. Egorova, and E. A. Tatarinova, “Synthesis and control by molecular parameters of superbranch silicon-contained polymers and polymeric nanocomposites on their base,” Ross. Nanotekhnol. 3(5–6), 42–46 (2008).

    Google Scholar 

  6. A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. D. Myakushev, M. A. Obrezkova, O. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, “Macromolecular nano-objects as a promising direction of polymer chemistry,” Polymer. Sci. C 53(1), 48 (2011).

    CAS  Google Scholar 

  7. R. G. Sinclair, “The case for polylactic acid as a commodity packaging plastic,” J. Macromolec. Sci. A 33, 585–597 (1996).

    Article  Google Scholar 

  8. J. Lunt, “Large-scale production, properties and commercial applications of polylactic acid polymers,” Polymer Degradation Stability 59, 145–152 (1998).

    Article  CAS  Google Scholar 

  9. R. A. Auras, B. Harte, S. Selke, and R. J. Hernandez, “Mechanical, physical, and barrier properties of poly(lactide) films,” J. Plastic Film Sheeting 19, 123–135 (2003).

    Article  CAS  Google Scholar 

  10. E. Masuhara, K. Kojima, and N. Tarumi, “Shika Zairyo Kenkyu-jo Hokoku,” Rep. Res. Inst. Dental Mater. 2, 18 (1954).

    Google Scholar 

  11. I. B. Meshkov, V. V. Kazakova, O. B. Gorbatcevich, N. V. Voronina, V. D. Myakouchev, and A. M. Muza- farov, “MQ-type polymers based on hyperbranched polyethoxysiloxane and molecular silicasoles,” Polym. Prep. 47(2), 1152 (2006).

    CAS  Google Scholar 

  12. A. A. Askadskii, Computational Materials Science of Polymers (Cambridge Int. Sci. Publ., Cambridge, 2003).

    Google Scholar 

  13. A. A. Askadskii, Physical Properties of Polymers—Prediction and Control (Gordon and Breach Publ., Amsterdam, 1996).

    Google Scholar 

  14. A. A. Askadskii, Yu. I. Matveev, and M. S. Matevosyan, Vysokomolek. Soed. A 32(10), 2157–2166 (1990).

    CAS  Google Scholar 

  15. Yu. I. Matveev and A. A. Askadskii, Vysokomolek. Soed. A 36(3), 436–443 (1994).

    CAS  Google Scholar 

  16. A. A. Askadskii and V. I. Kondrashchenko, Computer Polymer Material Science, Vol. 1: Atomic-Molecular Level (Nauchnyi Mir, Moscow, 1999) [in Russian].

    Google Scholar 

  17. D. I. Svergun and L. A. Feigin, X-Ray and Neutron Low-Angular Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  18. D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  Google Scholar 

  19. D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  Google Scholar 

  20. M. B. Kozin and D. I. Svergun, “Automated matching of high- and low-resolution structural models,” J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  21. L. J. Fetters, D. J. Lohes, and R. H. Colby, Physical Properties of Polymers Handbook (American Institute of Physics, Woodbury, NY, 1996).

    Google Scholar 

  22. B. K. Vainshtein, X-Rays Diffraction at Molecules Chains (Izd. Akademii Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  23. T. S. Kurkin, A. N. Ozerin, A. S. Kechek’yan, O. T. Gritsenko, L. A. Ozerina, G. G. Alkhanishvili, V. G. Sushchev, and V. Yu. Dolmatov, “The structure and properties of polymer composite fibers based on poly(vinyl alcohol) and nanodiamond of detonation synthesis,” Nanotech. Russ. 5(3–4), 340 (2010).

    Article  Google Scholar 

  24. G. Allegra, G. Raos, and M. Vacatello, “Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement,” Prog. Polym. Sci. 33, 683–731 (2008).

    Article  CAS  Google Scholar 

  25. J. B. Hooper and K. S. Schweizer, “Theory of phase separation in polymer nanocomposites,” Macromolecules 39, 5133–5142 (2006).

    Article  CAS  Google Scholar 

  26. S. H. Wu, Polymer 26(12), 1855–1863 (1985).

    Article  CAS  Google Scholar 

  27. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Metals Nanoparticles in Polymers (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zhiltsov.

Additional information

Original Russian Text © A.S. Zhiltsov, I.B. Meshkov, T.S. Kurkin, O.B. Gorbatsevich, V.V. Kazakova, A.A. Askadskii, O.A. Serenko, A.N. Ozerin, A.M. Muzafarov, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhiltsov, A.S., Meshkov, I.B., Kurkin, T.S. et al. Structure of polylactide-modified silicasol nanocomposites based on thermodynamically compatible components. Nanotechnol Russia 8, 644–654 (2013). https://doi.org/10.1134/S1995078013050157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013050157

Keywords

Navigation