Nanotechnologies in Russia

, Volume 8, Issue 7–8, pp 466–481 | Cite as

Effect of iron doping on the properties of nanopowders and coatings on the basis of Al2O3 produced by pulsed electron beam evaporation

  • S. Yu. Sokovnin
  • V. G. Il’ves
  • A. I. Surdo
  • I. I. Mil’man
  • M. I. Vlasov


Multiphase nanopowders (NPs) and amorphous/amorphous-nanocrystalline coatings (A-NC) have been prepared by the evaporation of ceramic targets of Al2O3-Fe2O3 (0.1, 3, 5 Fe2O3 mass %) by a pulsed electron beam in vacuum. The specific surface area of NP Al2O3-Fe2O3 reached 277 m2/g. The α and γ phases Al2O3 and other nonidentified phases have been found in the composition of NP Al2O3-Fe2O3. All coatings contained an insignificant fraction of the crystalline γ phase. No secondary phases on the basis of iron have been revealed. According to transmission electron microscopy, the fine fraction of NP Al2O3-Fe2O3 consists of amorphous nanoparticles of an irregular and quasispherical shape no more than 10 nm in size which form agglomerates reaching 1.5 μm. A large fraction of NPs consists of crystal spherical nanoparticles with preferential sizes of about 10–20 nm. All NP Al2O3-Fe2O3 showed ferromagnetic behavior at room temperature. The maximum magnetic response has been established in NPs with a minimum iron content (1.1 mass %). The pulsed cathode luminescence spectra of coatings and NP Al2O3-Fe2O3 have been presented by a wide band in the wavelength range of 300–900 nm regardless of their phase composition. Phase transformations into NP AL2O3-1.1% Fe and coatings from undoped Al2O3 heated to 1400°C occur according to the following scheme: amorphous phase → γ → δ → θ → α, regardless of their initial phase composition. The threshold of thermal stability of the Γ phase in NPs and the coating of undoped Al2O3 does not exceed 830°C. For the first time, the increased thermo and optically stimulated luminescent response comparable with the response of the leading TLD-500K thermoluminescent dosimeter has been reached in A-NC coatings of undoped Al2O3.


Pulse Electron Beam Iron Doping Differen Tial Scanning Calorimetry Induc Tive Couple Plasma Pulse Cathode Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?,” Acta Mater. 59, 7757–7767 (2011).CrossRefGoogle Scholar
  2. 2.
    O. Zywitzki, G. Hoetzsch, F. Fietzke, and K. Goedicke, Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering,” Surf. Coat. Technol. 82,1–2), 169–175 (1996).CrossRefGoogle Scholar
  3. 3.
    O. Kyrylov, D. Kurapov, and J. M. Schneider, “Effect of ion irradiation during deposition on the structure of alumina thin films grown by plasma assisted chemical vapour deposition,” Appl. Phys. A: Mater. Sci. Processing 80(8), 1657–1660 (2005).CrossRefGoogle Scholar
  4. 4.
    J. M. Andersson, Zs. Czigány, P. Jin, and U. Helmersson, “Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers,” J. Vac. Sci. Technol. A 22, 117–121 (2004).CrossRefGoogle Scholar
  5. 5.
    P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, and U. Helmersson, “Low temperature deposition of α-Al2O3 thin films by sputtering using a Cr2O3 template,” J. Vac. Sci. Technol. A. 20, 2134–2136 (2002).CrossRefGoogle Scholar
  6. 6.
    J. M. Andersson, E. Wallin, U. Helmersson, U. Kreissig, and E. P. Munger, “Al2O3 thin films grown at low temperatures,” Thin Solid Films 513, 57–59 (2006).CrossRefGoogle Scholar
  7. 7.
    P. Eklund, M. Sridharan, G. Singh, and J. Bottiger, “Thermal Stability and Phase Transformations of γ-/Amorphous-Al2O3,” Thin Films Plasma Processes Polym.s 6(S1), S907–S911 (2009).CrossRefGoogle Scholar
  8. 8.
    X. F. Duan, N. H. Tran, N. K. Roberts, and R. N. Lamb, “Solvothermal approach for low temperature deposition of aluminium oxide thin films,” Thin Solid Films 518(15), 4290–4293 (2010).CrossRefGoogle Scholar
  9. 9.
    V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204, 1576–1581 (2010).CrossRefGoogle Scholar
  10. 10.
    T. Kohara, H. Tamagaki, Y. Ikari, and H. Fujii, “Deposition of a-Al2O3 hard coatings by reactive magnetron sputtering,” Surf. Coat. Technol. 185, 166–171 (2004).CrossRefGoogle Scholar
  11. 11.
    R. Romàn, T. Hernàndez, and M. Gonzàlez, “Nano or micro grained alumina powder? A choose before sintering,” Boletín de la Sociedad Española de Cerámica y Vidrio 47(6), 311–318 (2008).CrossRefGoogle Scholar
  12. 12.
    G. R. Karagedov and A. L. Myz, “Preparation and sintering pure nanocrystalline α-alumina powder,” J. Europ. Ceram. Soc. 32(1), 219–225 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, “Synthesis of ultrafne γ-Al2O3 powders by pulsed laser ablation,” J. Nanopart. Res. 2(1), 75–83 (2000).CrossRefGoogle Scholar
  14. 14.
    D. A. Dubov, Vl. Snytnikov, and V. N. Snytnikov, “The way to synthesize nanopowders of churlish oxides by means of laser evaporation,” in Collection of Scientific Papers of Novosibirsk State Technical University (Novosibirsk, 2005), No. 4(42), pp. 83–90 [in Russian].Google Scholar
  15. 15.
    S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Use of an electron accelerator to produce nanopowders by evaporation of initial materials at atmospheric pressure,” Russ. Phys. J. 50(2), 120–124 (2007).CrossRefGoogle Scholar
  16. 16.
    V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, S. Yu. Sokovnin, A. V. Spirina, and M. A. Uimin, “Physiscal characteristics of Al2O3-Al(Cu) nanopowders synthesized by target electron-beam evaporation,” Fiz. Khim. Obrab. Mater., No. 2, 65–70 (2011).Google Scholar
  17. 17.
    S. Schlabach, V. Szabó, D. Vollath, A. Braun, and R. Clasen, “Structure of alumina and zirconia nanoparticles synthesized by the Karlsruhe Microwave Plasma Process,” Solid State Phenom. 99–100, 191–196 (2004).CrossRefGoogle Scholar
  18. 18.
    K. Jiang, K. Sarakinos, S. Konstantinidis, and J. M. Schneider, “Low temperature synthesis of α-Al2O3 films by high-power plasma-assisted chemical vapor deposition,” J. Phys. D: Appl. Phys. 43, 325202 (15) (2010).Google Scholar
  19. 19.
    D. L. Alontseva, S. N. Bratushka, A. D. Pogrebnyak, N. V. Prokhorenkova, and V. T. Shablya, “Structure and properties of coatings and modified layers synthesized by means of plasma flows,” Fiz. Inzh. Poverkhn. 5(3–4), 124–139 (2007).Google Scholar
  20. 20.
    A. D. Pogrebnyak, M. I. Il’yashenko, S. N. Bratushka, V. V. Ponaryadov, and N. K. Erdybaeva, “The way for forming high-dispersed state in plasma-detonating aluminum oxide coating,” Fiz. Inzh. Poverkhn. 4(1–2), 32–47 (2006).Google Scholar
  21. 21.
    I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc. 81(8), 1995–2012 (1998).CrossRefGoogle Scholar
  22. 22.
    L. A. Krushinskaya and Ya. A. Stel’makh, “Structure and properties of aluminum oxide thick condensates synthesized by electron-beam evaporation and deposition of vapor phase in vacuum,” VANT. Ser.: Chist. Mater. Vakuum. Tekhnol. 19(6), 92–98 (2011).Google Scholar
  23. 23.
    E. Krumov, V. Mankov, and K. Starbova, “Nanosized columnar microstructure and related properties of electron gun deposited Al2O3 thin films,” Vacuum 76, 211–214 (2004).CrossRefGoogle Scholar
  24. 24.
    H. H. Huang, Y. S. Liu, Y. M. Chen, M. C. Huang, and M. C. Wang, “Effect of oxygen pressure on the microstructure and properties of the Al2O3-SiO2 thin films deposited by E-beam evaporation,” Surf. Coat. Technol. 200, 3309–3313 (2006).CrossRefGoogle Scholar
  25. 25.
    N. Yu, T. W. Simpson, P. C. McIntyre, M. Nastasi, and I. V. Mitchell, “Doping effects on the kinetics of solid phase epitaxial growth of amorphous alumina thin films on sapphire,” Appl. Phys. Lett. 67, 924–926 (1995).CrossRefGoogle Scholar
  26. 26.
    V. S. Kortov, I. I. Mil’man, and S. V. Nikiforov, “Solid dosimetry,” Izv. Tomsk. Politekhn. Univ. 303(2), 35–45 (2000).Google Scholar
  27. 27.
    C. E. Chryssou and C. W. Pitt, “Al2O3 thin films by plasma-enhanced chemical vapor deposition using trimethyl-amine alane (TMAA) as the Al precursor,” Appl. Phys. A 65, 469–475 (1997).CrossRefGoogle Scholar
  28. 28.
    Yu. A. Kotov, S. Yu. Sokovnin, V. G. Il’ves, and C. K. Rhee, RF Patent 2353573 B82B 3/00, Byull. Izobret., No. 12 (2009).Google Scholar
  29. 29.
    S. G. Mikhailov, V. V. Osipov, and V. I. Solomonov, “Pulse cathodoluminescent KLAVI 1 AU device for matter analyzing,” Prib. Tekhn. Eksperim., No. 3, 164–165 (2001).Google Scholar
  30. 30.
    I. I. Mil’man, E. V. Moiseikin, S. V. Nikiforov, S. V. Solov’ev, I. G. Revkov, and E. N. Litovchenko, “Role of deep traps in luminescence of α-Al2O3:C anion-defect crystals,” Fiz. Tverd. Tela 50(11), 1991–1995 (2008).Google Scholar
  31. 31.
    A. K. Ladavos and T. V. Bakas, “The Al2O3-Fe2O3 mixed oxidic system, I. Preparation and characterization,” React. Kinet. Catal. Lett. 73(2), 223–228 (2001).CrossRefGoogle Scholar
  32. 32.
    S. Yu. Sokovnin, V. G. Il’ves, and S. V. Pryanichnikov, “Structure and magnetic properties of ZnO nanopowders doped by ferrum,” Zh. Tekh. Fiz. (2013) (in press).Google Scholar
  33. 33.
    C. Oprea and V. Ionescu, “TEM and XRD investigation of Fe2O3-Al2O3 system,” Ovidius Univ. Ann. Chem. 20(2), 222–226 (2009).Google Scholar
  34. 34.
    A. D. Pogrebnyak, Yu. N. Tyurin, Yu. F. Ivanov, A. P. Kobzev, O. P. Kul’ment’eva, and M. V. Il’yashenko, “The way to produce and investigate structure and properties of Al2O3 plasma-detonating coatings,” Pis’ma Zh. Tekh. Fiz. 26(21), 3–60 (2000).Google Scholar
  35. 35.
    R. Nakamura, T. Shudo, A. Hirata, M. Ishimaruand, and H. Nakajima, “Nanovoid formation through the annealing of amorphous Al2O3 and WO3 films,” Scripta Mater. 64, 197–200 (2011).CrossRefGoogle Scholar
  36. 36.
    R. Nakamura, M. Ishimaru, A. Hirata, K. Sato, M. Tane, H. Kimizuka, T. Shudo, T. J. Konno and H. Nakajima, “Enhancement of nanovoid formation in annealed amorphous Al2O3 including W,” J. Appl. Phys. 110, 064324 (7) (2011).Google Scholar
  37. 37.
    E. Yu. Svetkina, “Mechanical-chemical variations of Al2O3 under vibration,” Vopr. Khim. Khim. Tekhnol., No. 4, 36–41 (2003).Google Scholar
  38. 38.
    R. S. Gates, S. M. Hsu, and E. E. Klaus, “Tribochemical mechanism of alumina with water,” Tribol. Trans 32(3), 357–363 (1989).CrossRefGoogle Scholar
  39. 39.
    E. S. Astapova, E. B. Pivchenko, and E. A. Vanina, “Transition α γ for aluminum oxide in corundum ceramic caused by neutron radiation,” Dokl. Akad. Nauk 376(5), 611–614 (2001).Google Scholar
  40. 40.
    Z. Zhou, H. Guo, M. Abbas, and S. Gong, “Effect of water vapor on the phase transformation of alumina grown on NiAl at 95°C,” Corrosion Sci. 53, 2943–2947 (2011).CrossRefGoogle Scholar
  41. 41.
    F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal doped ZnO films,” Mater. Sci. Eng. 62, 1–35 (2008).CrossRefGoogle Scholar
  42. 42.
    T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nature Mater. 9, 965–974 (2010).CrossRefGoogle Scholar
  43. 43.
    J. M. D. Coye and S. Chambers, “Oxide dilute magnetic semiconductors-fact or fiction?,” MRS Bull. 33, 1053–1058 (2008).CrossRefGoogle Scholar
  44. 44.
    J. M. D. Coey, “d0 Ferromagnetism,” Solid State Sci. 7, 660–667 (2005).CrossRefGoogle Scholar
  45. 45.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Sid- desh, and C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides,” Phys. Rev. B 74(16), 161304 (4) (2006).CrossRefGoogle Scholar
  46. 46.
    Y. L. Zheng, C. M. Zhen, X. Q. Wang, L. Ma, X. L. Li, and D. L. Hou, “Room-temperature ferromagnetism observed in alumina films,” Solid State Sci. 13(8), 1516–1519 (2011).CrossRefGoogle Scholar
  47. 47.
    V. G. Il’ves and S. Yu. Sokovnin, “The way to synthesize ZnO and Zn-ZnO nanopowders by means of pulse electron beam evaporation in low pressure gas,” Ross. Nanotekhnol. 6(1–2), 20–26 (2011).Google Scholar
  48. 48.
    S. Yu. Sokovnin, V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, and M. A. Uimin, “Pulse electron evaporation of ZnO-Zn nanopowders doped by cuprum,” in Proc. 4th All-Russian Conf. on Nanomaterials (A. Baikov Institute of Metallurgy and Materials Science, Moscow, March 1–4, 2011), pp. 128, 574.Google Scholar
  49. 49.
    S. Yu. Sokovnin and V. G. Il’ves, The Way to Use Pulse Electron Beam for Synthesizing Metal Oxide Powders (Ural Brunch RAS, Yekaterinburg, 2011) [in Russian].Google Scholar
  50. 50.
    V. G. Il’ves and S.Yu. Sokovnin, “The way to produce and investigate properties of CeO2 nanopowders,” Ross. Nanotekhnol. 7(3–4), 7–16 (2012).Google Scholar
  51. 51.
    V. G. Il’ves and S. Yu. Sokovnin, “Magnetic properties of ZnS nanopowders synthesized by means of pulse electron beam,” in Interuniversity Collection of Papers “Problems of Spectroscopy and Spectrometry (Ural State Tech. Univ., Yekaterinburg, 2010), Issue 26, pp. 237–242 [in Russian].Google Scholar
  52. 52.
    T. K. Kundu, M. Mukherjee, and D. Chakravorty, “Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route,” J. Mater. Sci. 33, 1759–1763 (1998).CrossRefGoogle Scholar
  53. 53.
    M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remskar, J. Pirnat, and Z. Jaglicic, “Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matric,” J. Alloys Compounds 441(1–2), 291–296 (2007).CrossRefGoogle Scholar
  54. 54.
    I. Sakamoto, S. Honda, H. Tanoue, N. Hayashi, and H. Yamane, “Structural and magnetic properties of Fe ion implanted Al2O3,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 148(1–4), 1039–1043 (1999).CrossRefGoogle Scholar
  55. 55.
    D. S. Xue, Y. L. Ma Y. Huang, P. H. Zhou, Z. P. Niu, F. S. Li, R. Job, and W. R. Fahrner, “Magnetic properties of pure Fe-Al2O3 nanocomposites,” J. Mater. Sci. Lett. 22, 1817–1820 (2003).CrossRefGoogle Scholar
  56. 56.
    N. M. Dempsey, L. Ranno, D. Givord, J. Gonzalo, R. Serna, G. T. Fei, A. K. Petford-Long, R. C. Doole, and D. E. Hole, “Magnetic behavior of Fe:Al2O3 nanocomposite films produced by pulsed laser deposition,” J. Appl. Phys. 90(12), 6268–6274 (2001).CrossRefGoogle Scholar
  57. 57.
    R. Ramesh, K. Ashok, G. M. Bhalero, S. Ponnusamy, and C. Muthamizhchelvan, “Synthesis and properties of α-Fe2O3 nanorods,” Cryst. Res. Technol. 45(9), 965–968 (2010).CrossRefGoogle Scholar
  58. 58.
    J. Wu, S. Mao, Z. G. Ye, Z. Xie, and L. Zheng, “Room-temperature weak ferromagnetism induced by point defects in alpha-Fe2O3,” Appl. Mater. Interfaces 2(6), 1561–1564 (2010).CrossRefGoogle Scholar
  59. 59.
    G. Schimanke and M. Martin, “In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3),” Solid State Ionics 136–137, 1235–1240 (2000).CrossRefGoogle Scholar
  60. 60.
    G. Ennas, G. Marongiu, A. Musinu, A. Falqui, P. Ballirano, and R. Caminiti, “Characterization of Nanocrystalline g-Fe2O3 Prepared by Wet Chemical Method,” J. Mater. Res. 14, 1570–1575 (1999).CrossRefGoogle Scholar
  61. 61.
    O. Kido, Y. Higashino, K. Kamitsuji, M. Kurumada, T. Sato, Y. Kimura, H. Suzuki, Y. Saito, and C. Kaito, “Phase Transition Temperature of γ-Fe2O3 Ultrafine Particle,” J. Phys. Soc. Jpn. 73, 2014–2016 (2004).CrossRefGoogle Scholar
  62. 62.
    B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Gering, and B. Baretzky, “Grain boundary layers in nanocrystalline ferromagnetic zinc oxide,” Pis’ma Zh. Eksp. Teor. Fiz. 92(6), 438–443 (2010).Google Scholar
  63. 63.
    B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schütz, P. A. van Aken, E. Goering, and B. Baretzky, “Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam,” Phys. Rev. B 79, 205206(6) (2009).CrossRefGoogle Scholar
  64. 64.
    K. Sato and L. Bergqvist, J. Kudrnovsky, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, “First-principles theory of dilute magnetic semiconductors,” Rev. Mod. Phys. 82(2), 1633–1690 (2010).CrossRefGoogle Scholar
  65. 65.
    L. I. Burova, N. S. Perov, A. S. Semisalova, V. A. Kulbachinskii, V. G. Kytin, V. V. Roddatis, A. L. Vasiliev, and A. R. Kaul, “Effect of the nanostructure on room temperature ferromagnetism and resistivity of undoped ZnO thin films grown by chemical vapor deposition,” Thin Solid Films 520, 4580–4585 (2012).CrossRefGoogle Scholar
  66. 66.
    D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi, and D. Xue, “Room temperature ferromagnetism of pure ZnO nanoparticles,” J. Appl. Phys. 105(4), 113928(4) (2009).Google Scholar
  67. 67.
    Y. L. Zheng, C. M. Zhen, X. Q. Wang, X. L. Li, and D. L. Hou, “Room-temperature ferromagnetismobserved in alumina films,” Solid State Sci. 13(8), 1516–1519 (2011).CrossRefGoogle Scholar
  68. 68.
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides,” Phys. Rev. B, Condens. Matter Mater. Phys. 74(16), 161306(6) (2006).CrossRefGoogle Scholar
  69. 69.
    S. Yu. Sokovnin and V. G. Il’ves, “Properties of nanopowders and coatings base on aluminum oxide synthesized by electron beam evaporation,” Ross. Nanotekhnol. (2013) (in press).Google Scholar
  70. 70.
    M. W. Blair, L. G. Jacobsohn, S. C. Tornga, O. Ugurlu, B. L. Bennett, E. G. Yukihara, and R. E. Muenchausen, “Nanophosphor aluminum oxide: Luminescence response of a potential dosimetric material,” J. Luminescence 130, 825–831 (2010).CrossRefGoogle Scholar
  71. 71.
    P. Mancosu, M. C. Cantone, I. Veronese, and A. Giussani, “Spatial distribution of beta extremity doses in nuclear medicine: a feasibility study with thin α-Al2O3:C TLDs,” Phys. Med. 26, 44–48 (2010).CrossRefGoogle Scholar
  72. 72.
    J. E. Villarreal-Barajas, L. Escobar-Alarcón, E. Camps, P. R. Gonzales, and E. Villagran, “Thermoluminescence response of aluminum oxide thin films to beta-particle and UV radiation,” Superficies y Vacío 13, 126–129 (2001).Google Scholar
  73. 73.
    G. P. Summers, “Thermoluminescence in single crystal α-Al2O3,” Radiat. Prot. Dosim. 8(1–2), 69–80 (1984).Google Scholar
  74. 74.
    T. S. Bessonova, M. P. Stanislavskii, A. I. Sobko, and V. Ya. Khaimov-Mal’kov, “Concentration relationship of radiation-optical effects in ruby,” J. Prikl. Spektroskop. 27(2), 238–243.Google Scholar
  75. 75.
    A. I. Surdo, V. S. Kortov, and F. F. Sharafutdinov, “Luminescence of anion-defective corundum with titanium impurity,” Radiat. Prot. Dosim. 84, 261–264 (1999).CrossRefGoogle Scholar
  76. 76.
    Ya. A. Valbis, P. A. Kulis, L. N. Raiskaya, V. A. Sandu- lenko, M. E. Springis, and Z. Z. Eromanov, “Recombination luminescence of α-Al2O3 crystals with admixture of IV group elements,” in Collection of Scientific Works of Latvian State University “Thermoactivating Spectroscopy for Defects in Ion Crystals” (Riga, 1983), pp. 126–144 [in Russian].Google Scholar
  77. 77.
    R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, and γ transition aluminas,” Acta Cryst. 47, 617–630 (1991).CrossRefGoogle Scholar
  78. 78.
    E. G. Yukihara and S. W. S. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications (Jonn Wiley and Sons, Chichester, 2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. Yu. Sokovnin
    • 1
    • 2
  • V. G. Il’ves
    • 1
  • A. I. Surdo
    • 2
    • 3
  • I. I. Mil’man
    • 2
  • M. I. Vlasov
    • 3
  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.Institute of Industrial Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations