Skip to main content
Log in

Effect of iron doping on the properties of nanopowders and coatings on the basis of Al2O3 produced by pulsed electron beam evaporation

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Multiphase nanopowders (NPs) and amorphous/amorphous-nanocrystalline coatings (A-NC) have been prepared by the evaporation of ceramic targets of Al2O3-Fe2O3 (0.1, 3, 5 Fe2O3 mass %) by a pulsed electron beam in vacuum. The specific surface area of NP Al2O3-Fe2O3 reached 277 m2/g. The α and γ phases Al2O3 and other nonidentified phases have been found in the composition of NP Al2O3-Fe2O3. All coatings contained an insignificant fraction of the crystalline γ phase. No secondary phases on the basis of iron have been revealed. According to transmission electron microscopy, the fine fraction of NP Al2O3-Fe2O3 consists of amorphous nanoparticles of an irregular and quasispherical shape no more than 10 nm in size which form agglomerates reaching 1.5 μm. A large fraction of NPs consists of crystal spherical nanoparticles with preferential sizes of about 10–20 nm. All NP Al2O3-Fe2O3 showed ferromagnetic behavior at room temperature. The maximum magnetic response has been established in NPs with a minimum iron content (1.1 mass %). The pulsed cathode luminescence spectra of coatings and NP Al2O3-Fe2O3 have been presented by a wide band in the wavelength range of 300–900 nm regardless of their phase composition. Phase transformations into NP AL2O3-1.1% Fe and coatings from undoped Al2O3 heated to 1400°C occur according to the following scheme: amorphous phase → γ → δ → θ → α, regardless of their initial phase composition. The threshold of thermal stability of the Γ phase in NPs and the coating of undoped Al2O3 does not exceed 830°C. For the first time, the increased thermo and optically stimulated luminescent response comparable with the response of the leading TLD-500K thermoluminescent dosimeter has been reached in A-NC coatings of undoped Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Engelhart, W. Dreher, O. Eibl, and V. Schier, “Deposition of alumina thin film by dual magnetron sputtering: Is it γ-Al2O3?,” Acta Mater. 59, 7757–7767 (2011).

    Article  CAS  Google Scholar 

  2. O. Zywitzki, G. Hoetzsch, F. Fietzke, and K. Goedicke, Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering,” Surf. Coat. Technol. 82,1–2), 169–175 (1996).

    Article  CAS  Google Scholar 

  3. O. Kyrylov, D. Kurapov, and J. M. Schneider, “Effect of ion irradiation during deposition on the structure of alumina thin films grown by plasma assisted chemical vapour deposition,” Appl. Phys. A: Mater. Sci. Processing 80(8), 1657–1660 (2005).

    Article  CAS  Google Scholar 

  4. J. M. Andersson, Zs. Czigány, P. Jin, and U. Helmersson, “Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers,” J. Vac. Sci. Technol. A 22, 117–121 (2004).

    Article  CAS  Google Scholar 

  5. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, and U. Helmersson, “Low temperature deposition of α-Al2O3 thin films by sputtering using a Cr2O3 template,” J. Vac. Sci. Technol. A. 20, 2134–2136 (2002).

    Article  CAS  Google Scholar 

  6. J. M. Andersson, E. Wallin, U. Helmersson, U. Kreissig, and E. P. Munger, “Al2O3 thin films grown at low temperatures,” Thin Solid Films 513, 57–59 (2006).

    Article  CAS  Google Scholar 

  7. P. Eklund, M. Sridharan, G. Singh, and J. Bottiger, “Thermal Stability and Phase Transformations of γ-/Amorphous-Al2O3,” Thin Films Plasma Processes Polym.s 6(S1), S907–S911 (2009).

    Article  CAS  Google Scholar 

  8. X. F. Duan, N. H. Tran, N. K. Roberts, and R. N. Lamb, “Solvothermal approach for low temperature deposition of aluminium oxide thin films,” Thin Solid Films 518(15), 4290–4293 (2010).

    Article  CAS  Google Scholar 

  9. V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, “Thermal stability of sputtered Al2O3 coatings,” Surf. Coat. Technol. 204, 1576–1581 (2010).

    Article  CAS  Google Scholar 

  10. T. Kohara, H. Tamagaki, Y. Ikari, and H. Fujii, “Deposition of a-Al2O3 hard coatings by reactive magnetron sputtering,” Surf. Coat. Technol. 185, 166–171 (2004).

    Article  CAS  Google Scholar 

  11. R. Romàn, T. Hernàndez, and M. Gonzàlez, “Nano or micro grained alumina powder? A choose before sintering,” Boletín de la Sociedad Española de Cerámica y Vidrio 47(6), 311–318 (2008).

    Article  Google Scholar 

  12. G. R. Karagedov and A. L. Myz, “Preparation and sintering pure nanocrystalline α-alumina powder,” J. Europ. Ceram. Soc. 32(1), 219–225 (2012).

    Article  CAS  Google Scholar 

  13. K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, “Synthesis of ultrafne γ-Al2O3 powders by pulsed laser ablation,” J. Nanopart. Res. 2(1), 75–83 (2000).

    Article  CAS  Google Scholar 

  14. D. A. Dubov, Vl. Snytnikov, and V. N. Snytnikov, “The way to synthesize nanopowders of churlish oxides by means of laser evaporation,” in Collection of Scientific Papers of Novosibirsk State Technical University (Novosibirsk, 2005), No. 4(42), pp. 83–90 [in Russian].

    Google Scholar 

  15. S. P. Bardakhanov, A. I. Korchagin, N. K. Kuksanov, A. V. Lavrukhin, R. A. Salimov, S. N. Fadeev, and V. V. Cherepkov, “Use of an electron accelerator to produce nanopowders by evaporation of initial materials at atmospheric pressure,” Russ. Phys. J. 50(2), 120–124 (2007).

    Article  CAS  Google Scholar 

  16. V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, S. Yu. Sokovnin, A. V. Spirina, and M. A. Uimin, “Physiscal characteristics of Al2O3-Al(Cu) nanopowders synthesized by target electron-beam evaporation,” Fiz. Khim. Obrab. Mater., No. 2, 65–70 (2011).

    Google Scholar 

  17. S. Schlabach, V. Szabó, D. Vollath, A. Braun, and R. Clasen, “Structure of alumina and zirconia nanoparticles synthesized by the Karlsruhe Microwave Plasma Process,” Solid State Phenom. 99–100, 191–196 (2004).

    Article  Google Scholar 

  18. K. Jiang, K. Sarakinos, S. Konstantinidis, and J. M. Schneider, “Low temperature synthesis of α-Al2O3 films by high-power plasma-assisted chemical vapor deposition,” J. Phys. D: Appl. Phys. 43, 325202 (15) (2010).

    Google Scholar 

  19. D. L. Alontseva, S. N. Bratushka, A. D. Pogrebnyak, N. V. Prokhorenkova, and V. T. Shablya, “Structure and properties of coatings and modified layers synthesized by means of plasma flows,” Fiz. Inzh. Poverkhn. 5(3–4), 124–139 (2007).

    Google Scholar 

  20. A. D. Pogrebnyak, M. I. Il’yashenko, S. N. Bratushka, V. V. Ponaryadov, and N. K. Erdybaeva, “The way for forming high-dispersed state in plasma-detonating aluminum oxide coating,” Fiz. Inzh. Poverkhn. 4(1–2), 32–47 (2006).

    Google Scholar 

  21. I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc. 81(8), 1995–2012 (1998).

    Article  CAS  Google Scholar 

  22. L. A. Krushinskaya and Ya. A. Stel’makh, “Structure and properties of aluminum oxide thick condensates synthesized by electron-beam evaporation and deposition of vapor phase in vacuum,” VANT. Ser.: Chist. Mater. Vakuum. Tekhnol. 19(6), 92–98 (2011).

    CAS  Google Scholar 

  23. E. Krumov, V. Mankov, and K. Starbova, “Nanosized columnar microstructure and related properties of electron gun deposited Al2O3 thin films,” Vacuum 76, 211–214 (2004).

    Article  CAS  Google Scholar 

  24. H. H. Huang, Y. S. Liu, Y. M. Chen, M. C. Huang, and M. C. Wang, “Effect of oxygen pressure on the microstructure and properties of the Al2O3-SiO2 thin films deposited by E-beam evaporation,” Surf. Coat. Technol. 200, 3309–3313 (2006).

    Article  CAS  Google Scholar 

  25. N. Yu, T. W. Simpson, P. C. McIntyre, M. Nastasi, and I. V. Mitchell, “Doping effects on the kinetics of solid phase epitaxial growth of amorphous alumina thin films on sapphire,” Appl. Phys. Lett. 67, 924–926 (1995).

    Article  CAS  Google Scholar 

  26. V. S. Kortov, I. I. Mil’man, and S. V. Nikiforov, “Solid dosimetry,” Izv. Tomsk. Politekhn. Univ. 303(2), 35–45 (2000).

    Google Scholar 

  27. C. E. Chryssou and C. W. Pitt, “Al2O3 thin films by plasma-enhanced chemical vapor deposition using trimethyl-amine alane (TMAA) as the Al precursor,” Appl. Phys. A 65, 469–475 (1997).

    Article  CAS  Google Scholar 

  28. Yu. A. Kotov, S. Yu. Sokovnin, V. G. Il’ves, and C. K. Rhee, RF Patent 2353573 B82B 3/00, Byull. Izobret., No. 12 (2009).

    Google Scholar 

  29. S. G. Mikhailov, V. V. Osipov, and V. I. Solomonov, “Pulse cathodoluminescent KLAVI 1 AU device for matter analyzing,” Prib. Tekhn. Eksperim., No. 3, 164–165 (2001).

    Google Scholar 

  30. I. I. Mil’man, E. V. Moiseikin, S. V. Nikiforov, S. V. Solov’ev, I. G. Revkov, and E. N. Litovchenko, “Role of deep traps in luminescence of α-Al2O3:C anion-defect crystals,” Fiz. Tverd. Tela 50(11), 1991–1995 (2008).

    Google Scholar 

  31. A. K. Ladavos and T. V. Bakas, “The Al2O3-Fe2O3 mixed oxidic system, I. Preparation and characterization,” React. Kinet. Catal. Lett. 73(2), 223–228 (2001).

    Article  CAS  Google Scholar 

  32. S. Yu. Sokovnin, V. G. Il’ves, and S. V. Pryanichnikov, “Structure and magnetic properties of ZnO nanopowders doped by ferrum,” Zh. Tekh. Fiz. (2013) (in press).

    Google Scholar 

  33. C. Oprea and V. Ionescu, “TEM and XRD investigation of Fe2O3-Al2O3 system,” Ovidius Univ. Ann. Chem. 20(2), 222–226 (2009).

    CAS  Google Scholar 

  34. A. D. Pogrebnyak, Yu. N. Tyurin, Yu. F. Ivanov, A. P. Kobzev, O. P. Kul’ment’eva, and M. V. Il’yashenko, “The way to produce and investigate structure and properties of Al2O3 plasma-detonating coatings,” Pis’ma Zh. Tekh. Fiz. 26(21), 3–60 (2000).

    Google Scholar 

  35. R. Nakamura, T. Shudo, A. Hirata, M. Ishimaruand, and H. Nakajima, “Nanovoid formation through the annealing of amorphous Al2O3 and WO3 films,” Scripta Mater. 64, 197–200 (2011).

    Article  CAS  Google Scholar 

  36. R. Nakamura, M. Ishimaru, A. Hirata, K. Sato, M. Tane, H. Kimizuka, T. Shudo, T. J. Konno and H. Nakajima, “Enhancement of nanovoid formation in annealed amorphous Al2O3 including W,” J. Appl. Phys. 110, 064324 (7) (2011).

    Google Scholar 

  37. E. Yu. Svetkina, “Mechanical-chemical variations of Al2O3 under vibration,” Vopr. Khim. Khim. Tekhnol., No. 4, 36–41 (2003).

    Google Scholar 

  38. R. S. Gates, S. M. Hsu, and E. E. Klaus, “Tribochemical mechanism of alumina with water,” Tribol. Trans 32(3), 357–363 (1989).

    Article  CAS  Google Scholar 

  39. E. S. Astapova, E. B. Pivchenko, and E. A. Vanina, “Transition α γ for aluminum oxide in corundum ceramic caused by neutron radiation,” Dokl. Akad. Nauk 376(5), 611–614 (2001).

    CAS  Google Scholar 

  40. Z. Zhou, H. Guo, M. Abbas, and S. Gong, “Effect of water vapor on the phase transformation of alumina grown on NiAl at 95°C,” Corrosion Sci. 53, 2943–2947 (2011).

    Article  CAS  Google Scholar 

  41. F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal doped ZnO films,” Mater. Sci. Eng. 62, 1–35 (2008).

    Article  Google Scholar 

  42. T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nature Mater. 9, 965–974 (2010).

    Article  CAS  Google Scholar 

  43. J. M. D. Coye and S. Chambers, “Oxide dilute magnetic semiconductors-fact or fiction?,” MRS Bull. 33, 1053–1058 (2008).

    Article  Google Scholar 

  44. J. M. D. Coey, “d0 Ferromagnetism,” Solid State Sci. 7, 660–667 (2005).

    Article  CAS  Google Scholar 

  45. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Sid- desh, and C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides,” Phys. Rev. B 74(16), 161304 (4) (2006).

    Article  Google Scholar 

  46. Y. L. Zheng, C. M. Zhen, X. Q. Wang, L. Ma, X. L. Li, and D. L. Hou, “Room-temperature ferromagnetism observed in alumina films,” Solid State Sci. 13(8), 1516–1519 (2011).

    Article  CAS  Google Scholar 

  47. V. G. Il’ves and S. Yu. Sokovnin, “The way to synthesize ZnO and Zn-ZnO nanopowders by means of pulse electron beam evaporation in low pressure gas,” Ross. Nanotekhnol. 6(1–2), 20–26 (2011).

    Google Scholar 

  48. S. Yu. Sokovnin, V. G. Il’ves, A. I. Medvedev, A. M. Murzakaev, and M. A. Uimin, “Pulse electron evaporation of ZnO-Zn nanopowders doped by cuprum,” in Proc. 4th All-Russian Conf. on Nanomaterials (A. Baikov Institute of Metallurgy and Materials Science, Moscow, March 1–4, 2011), pp. 128, 574.

  49. S. Yu. Sokovnin and V. G. Il’ves, The Way to Use Pulse Electron Beam for Synthesizing Metal Oxide Powders (Ural Brunch RAS, Yekaterinburg, 2011) [in Russian].

    Google Scholar 

  50. V. G. Il’ves and S.Yu. Sokovnin, “The way to produce and investigate properties of CeO2 nanopowders,” Ross. Nanotekhnol. 7(3–4), 7–16 (2012).

    Google Scholar 

  51. V. G. Il’ves and S. Yu. Sokovnin, “Magnetic properties of ZnS nanopowders synthesized by means of pulse electron beam,” in Interuniversity Collection of Papers “Problems of Spectroscopy and Spectrometry (Ural State Tech. Univ., Yekaterinburg, 2010), Issue 26, pp. 237–242 [in Russian].

    Google Scholar 

  52. T. K. Kundu, M. Mukherjee, and D. Chakravorty, “Growth of nano-α-Fe2O3 in a titania matrix by the sol-gel route,” J. Mater. Sci. 33, 1759–1763 (1998).

    Article  CAS  Google Scholar 

  53. M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remskar, J. Pirnat, and Z. Jaglicic, “Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matric,” J. Alloys Compounds 441(1–2), 291–296 (2007).

    Article  CAS  Google Scholar 

  54. I. Sakamoto, S. Honda, H. Tanoue, N. Hayashi, and H. Yamane, “Structural and magnetic properties of Fe ion implanted Al2O3,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 148(1–4), 1039–1043 (1999).

    Article  CAS  Google Scholar 

  55. D. S. Xue, Y. L. Ma Y. Huang, P. H. Zhou, Z. P. Niu, F. S. Li, R. Job, and W. R. Fahrner, “Magnetic properties of pure Fe-Al2O3 nanocomposites,” J. Mater. Sci. Lett. 22, 1817–1820 (2003).

    Article  CAS  Google Scholar 

  56. N. M. Dempsey, L. Ranno, D. Givord, J. Gonzalo, R. Serna, G. T. Fei, A. K. Petford-Long, R. C. Doole, and D. E. Hole, “Magnetic behavior of Fe:Al2O3 nanocomposite films produced by pulsed laser deposition,” J. Appl. Phys. 90(12), 6268–6274 (2001).

    Article  CAS  Google Scholar 

  57. R. Ramesh, K. Ashok, G. M. Bhalero, S. Ponnusamy, and C. Muthamizhchelvan, “Synthesis and properties of α-Fe2O3 nanorods,” Cryst. Res. Technol. 45(9), 965–968 (2010).

    Article  CAS  Google Scholar 

  58. J. Wu, S. Mao, Z. G. Ye, Z. Xie, and L. Zheng, “Room-temperature weak ferromagnetism induced by point defects in alpha-Fe2O3,” Appl. Mater. Interfaces 2(6), 1561–1564 (2010).

    Article  CAS  Google Scholar 

  59. G. Schimanke and M. Martin, “In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3),” Solid State Ionics 136–137, 1235–1240 (2000).

    Article  Google Scholar 

  60. G. Ennas, G. Marongiu, A. Musinu, A. Falqui, P. Ballirano, and R. Caminiti, “Characterization of Nanocrystalline g-Fe2O3 Prepared by Wet Chemical Method,” J. Mater. Res. 14, 1570–1575 (1999).

    Article  CAS  Google Scholar 

  61. O. Kido, Y. Higashino, K. Kamitsuji, M. Kurumada, T. Sato, Y. Kimura, H. Suzuki, Y. Saito, and C. Kaito, “Phase Transition Temperature of γ-Fe2O3 Ultrafine Particle,” J. Phys. Soc. Jpn. 73, 2014–2016 (2004).

    Article  CAS  Google Scholar 

  62. B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Gering, and B. Baretzky, “Grain boundary layers in nanocrystalline ferromagnetic zinc oxide,” Pis’ma Zh. Eksp. Teor. Fiz. 92(6), 438–443 (2010).

    Google Scholar 

  63. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schütz, P. A. van Aken, E. Goering, and B. Baretzky, “Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam,” Phys. Rev. B 79, 205206(6) (2009).

    Article  Google Scholar 

  64. K. Sato and L. Bergqvist, J. Kudrnovsky, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, “First-principles theory of dilute magnetic semiconductors,” Rev. Mod. Phys. 82(2), 1633–1690 (2010).

    Article  CAS  Google Scholar 

  65. L. I. Burova, N. S. Perov, A. S. Semisalova, V. A. Kulbachinskii, V. G. Kytin, V. V. Roddatis, A. L. Vasiliev, and A. R. Kaul, “Effect of the nanostructure on room temperature ferromagnetism and resistivity of undoped ZnO thin films grown by chemical vapor deposition,” Thin Solid Films 520, 4580–4585 (2012).

    Article  CAS  Google Scholar 

  66. D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi, and D. Xue, “Room temperature ferromagnetism of pure ZnO nanoparticles,” J. Appl. Phys. 105(4), 113928(4) (2009).

    Google Scholar 

  67. Y. L. Zheng, C. M. Zhen, X. Q. Wang, X. L. Li, and D. L. Hou, “Room-temperature ferromagnetismobserved in alumina films,” Solid State Sci. 13(8), 1516–1519 (2011).

    Article  CAS  Google Scholar 

  68. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides,” Phys. Rev. B, Condens. Matter Mater. Phys. 74(16), 161306(6) (2006).

    Article  Google Scholar 

  69. S. Yu. Sokovnin and V. G. Il’ves, “Properties of nanopowders and coatings base on aluminum oxide synthesized by electron beam evaporation,” Ross. Nanotekhnol. (2013) (in press).

    Google Scholar 

  70. M. W. Blair, L. G. Jacobsohn, S. C. Tornga, O. Ugurlu, B. L. Bennett, E. G. Yukihara, and R. E. Muenchausen, “Nanophosphor aluminum oxide: Luminescence response of a potential dosimetric material,” J. Luminescence 130, 825–831 (2010).

    Article  CAS  Google Scholar 

  71. P. Mancosu, M. C. Cantone, I. Veronese, and A. Giussani, “Spatial distribution of beta extremity doses in nuclear medicine: a feasibility study with thin α-Al2O3:C TLDs,” Phys. Med. 26, 44–48 (2010).

    Article  Google Scholar 

  72. J. E. Villarreal-Barajas, L. Escobar-Alarcón, E. Camps, P. R. Gonzales, and E. Villagran, “Thermoluminescence response of aluminum oxide thin films to beta-particle and UV radiation,” Superficies y Vacío 13, 126–129 (2001).

    Google Scholar 

  73. G. P. Summers, “Thermoluminescence in single crystal α-Al2O3,” Radiat. Prot. Dosim. 8(1–2), 69–80 (1984).

    CAS  Google Scholar 

  74. T. S. Bessonova, M. P. Stanislavskii, A. I. Sobko, and V. Ya. Khaimov-Mal’kov, “Concentration relationship of radiation-optical effects in ruby,” J. Prikl. Spektroskop. 27(2), 238–243.

  75. A. I. Surdo, V. S. Kortov, and F. F. Sharafutdinov, “Luminescence of anion-defective corundum with titanium impurity,” Radiat. Prot. Dosim. 84, 261–264 (1999).

    Article  CAS  Google Scholar 

  76. Ya. A. Valbis, P. A. Kulis, L. N. Raiskaya, V. A. Sandu- lenko, M. E. Springis, and Z. Z. Eromanov, “Recombination luminescence of α-Al2O3 crystals with admixture of IV group elements,” in Collection of Scientific Works of Latvian State University “Thermoactivating Spectroscopy for Defects in Ion Crystals” (Riga, 1983), pp. 126–144 [in Russian].

    Google Scholar 

  77. R. S. Zhou and R. L. Snyder, “Structures and transformation mechanisms of the η, and γ transition aluminas,” Acta Cryst. 47, 617–630 (1991).

    Article  Google Scholar 

  78. E. G. Yukihara and S. W. S. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications (Jonn Wiley and Sons, Chichester, 2011).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Sokovnin.

Additional information

Original Russian Text © S.Yu. Sokovnin, V.G. Il’ves, A.I. Surdo, I.I. Mil’man, M.I. Vlasov, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokovnin, S.Y., Il’ves, V.G., Surdo, A.I. et al. Effect of iron doping on the properties of nanopowders and coatings on the basis of Al2O3 produced by pulsed electron beam evaporation. Nanotechnol Russia 8, 466–481 (2013). https://doi.org/10.1134/S1995078013040186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013040186

Keywords

Navigation