Advertisement

Nanotechnologies in Russia

, Volume 8, Issue 5–6, pp 409–422 | Cite as

Current methods of the synthesis of luminescent semiconductor nanocrystals for biomedical applications

  • P. S. Samokhvalov
  • M. V. Artemyev
  • I. R. Nabiev
Article

Abstract

The most widespread methods for the colloidal synthesis of highly luminescent CdSe, CdS, ZnSe and other AIIBVI core-shell colloidal quantum dots (QDs) are reviewed. Advantages and disadvantages of the currently developed one-pot QD synthesis as compared to the classical multistage approaches are discussed. The noninjection one-pot method starts with the growth of metastable magic-size seeds; their subsequent recrystallization ensures slow, controllable growth of highly monodisperse, defect-free core nanocrystals of desired sizes and shapes. Subsequent formation of a shell out of a semiconductor with a wider bandgap yields gradient core-shell QDs with a smooth potential barrier for electrons and holes, without strains or interfacial defects, and, as a consequence, a luminescence quantum yield (QY) approaching 100%. This approach can also be applied to other semiconductor systems to cover the broad spectral range from the near-ultraviolet (UV) to infrared (IR) regions of the optical spectrum. These nanocrystals may replace fluorescent organic dyes and rare-earth luminophores in their current applications.

Keywords

quantum dots one-pot synthesis magic-size seeds alloyed nanocrystals gradient core-shell structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984).CrossRefGoogle Scholar
  2. 2.
    A. Henglein, “Q-particles: size quantization effect in colloidal semiconductors,” Progr. Colloid Polymer Sci. 73, 1–4 (1987).CrossRefGoogle Scholar
  3. 3.
    A. J. Nozik, F. Williams, M. T. Nenadovic, T. Rajh, and O. I. Mii, “Size quantization on small semiconductor particles,” J. Phys. Chem. 89, 397–399 (1985).CrossRefGoogle Scholar
  4. 4.
    C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30, 545–610 (2000).CrossRefGoogle Scholar
  5. 5.
    D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects for colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).CrossRefGoogle Scholar
  6. 6.
    N. Gaponik, S. G. Hickey, D. Dorfs, A. L. Rogach, and A. Eychmüller, “Progress in the light emission of colloidal semiconductor nanocrystals,” Small 6, 1364–1378 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Reiss, M. Protiére, and L. Li, “Core-shell semiconductor nanocrystals,” Small 5, 154–168 (2009).CrossRefGoogle Scholar
  8. 8.
    X. Peng, “Band-gap and composition engineering on nanocrystal (BCEN) in solution,” Acc. Chem. Res. 43, 1387–1395 (2010).CrossRefGoogle Scholar
  9. 9.
    C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).CrossRefGoogle Scholar
  10. 10.
    X. Peng, J. Wickham, and A. P. Alivisatos, “Kinetics of II–VI and III–V colloidal semiconductor nonocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc. 120, 5343–5344 (1998).CrossRefGoogle Scholar
  11. 11.
    Y. A. Yang, H. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. Int. Ed. 44, 6712–6715 (2005).CrossRefGoogle Scholar
  12. 12.
    A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Yu. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art,” J. Phys. Chem. C 111, 14628–14637 (2007).CrossRefGoogle Scholar
  13. 13.
    D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, “Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphibe mixture,” Nano Lett. 1, 207–211 (2001).CrossRefGoogle Scholar
  14. 14.
    L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” J. Am. Chem. Soc. 124, 2049–2055 (2002).CrossRefGoogle Scholar
  15. 15.
    Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126, 14336–14337 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Protiere, N. Nerambourg, O. Renard, and P. Reiss, “Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals,” Nanoscale Res. Lett. 6, 472 (2011).CrossRefGoogle Scholar
  17. 17.
    H. Qian, X. Qiu, L. Li, and J. Ren, “Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots,” J. Phys. Chem. B 110, 9034–9040 (2006).CrossRefGoogle Scholar
  18. 18.
    D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach,” Adv. Mater. 17, 176–179 (2005).CrossRefGoogle Scholar
  19. 19.
    D. Zhou, J. Han, Y. Liu, M. Liu, X. Zhang, H. Zhang, and B. Yang, “Nucleation of aqueous semiconductor nanocrystals: a neglected factor for determining the photoluminescence,” J. Phys. Chem. C 114, 22487–22492 (2010).CrossRefGoogle Scholar
  20. 20.
    T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller, and H. Weller, “CdS nanoclysters: synthesis, characterization, size-dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift,” J. Phys. Chem. 98, 7665–7673 (1994).CrossRefGoogle Scholar
  21. 21.
    V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, “Molecular limit of bulk semiconductor: size dependence of the «band gap» in CdSe cluster molecules,” J. Am. Chem. Soc. 122, 22673–2674 (2000).CrossRefGoogle Scholar
  22. 22.
    V. N. Soloviev, A. Eichhofer, D. Fenske, and U. Banin, “Size-dependent optical spectroscopy of homologous series of CdSe cluster molecules,” J. Am. Chem. Soc. 123, 2354–2364 (2001).CrossRefGoogle Scholar
  23. 23.
    Z. A. Peng and X. J. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” Am. Chem. Soc. 124, 3343–3353 (2002).CrossRefGoogle Scholar
  24. 24.
    A. Kasuya, R. Sivamohan, Yu. A. Barnakov, I. M. Dmitruk, T. Nirasawa, V. R. Romanyuk, V. Kumar, S. V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R. V. Belosludov, V. Sundararajan, and Y. Kawazoe, “Ultra stable nanoparticles of CdSe revealed from mass-spectrometry,” Nature Mater. 3, 99–102 (2004).CrossRefGoogle Scholar
  25. 25.
    E. Groeneveld, S. van Berkum, A. Meijerink, and C. de Mello Donega, “Growth and stability of ZnTe magic-size nanocrystals,” Small 7, 1247–1256 (2011).CrossRefGoogle Scholar
  26. 26.
    K. Yu, J. Ouyang, Md. B. Zaman, D. Johnston, F. J. Yan, G. Li, C. I. Ratcliffe, D. M. Leek, X. Wu, J. Stupak, Z. Yakubek, and D. Whitfield, “Single-sized CdSe nanocrystals with bandgap photoemission via noninjectionone-pot approach,” J. Phys. Chem. 113, 3390–3401 (2011).Google Scholar
  27. 27.
    J. Ouyang, Md. B. Zaman, F. J. Yan, D. Johnston, G. Li, X. Wu, D. Leek, C. I. Ratcliffe, J. A. Ripmeester, and K. Yu, “Multiply families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot synthesis,” J. Phys. Chem. C 112, 13805–13811 (2008).CrossRefGoogle Scholar
  28. 28.
    M. Li, J. Ouyang, C. I. Ratcliffe, L. Pietri, X. Wu, D. M. Leek, I. Moudrakovski, Q. Lin, B. Yang, and K. Yu, “CdSe magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation,” ACS Nano 3, 3832–3838 (2009).CrossRefGoogle Scholar
  29. 29.
    R. Wang, J. Ouyang, S. Nikolaus, L. Brestaz, Md. B. Zaman, X. Wu, D. Leek, C. I. Ratcliffe, and K. Yu, “Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence,” Chem. Commun., 962–964 (2009).Google Scholar
  30. 30.
    R. Wang, O. Calvignanello, C. I. Ratcliffe, X. Wu, D. M. Leek, Md. B. Zaman, D. Kingston, J. A. Rip- meester, and K. Yu, “Homogeneously alloyed CdTeSe single-sized nanocrystals with bandgap photoluminescence,” J. Phys. Chem. C 113, 3402–3408 (2009).CrossRefGoogle Scholar
  31. 31.
    S. Ithurria and B. Dubertret, “Quasi, 2D colloidal CdSe platelets with thicknesses controlled at the atomic level,” J. Am. Chem. Soc. 130, 16504–16505 (2008).CrossRefGoogle Scholar
  32. 32.
    S. Ithurria, G. Bosquet, and B. Dubertret, “Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets,” J. Am. Chem. Soc. 133, 3070–3077 (2011).CrossRefGoogle Scholar
  33. 33.
    A. D. Dukes, J. R. McBridge, and S. J. Rosenthal, “Synthesis of magic-sized CdSe and CdTe nanocrystals with diisooctylphosphinic acid,” Chem. Mater. 22, 6402–6408 (2010).CrossRefGoogle Scholar
  34. 34.
    Z. Deng, O. Schulz, S. Lin, B. Ding, X. Liu, X. Wei, R. Ros, H. Yan, and Y. Liu, “Aqueous synthesis of zinc-blended CdTe/CdS magic-core/thick shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared,” J. Am. Chem. Soc. 132, 5592–5593 (2010).CrossRefGoogle Scholar
  35. 35.
    M. Sun and X. Yang, “Phosphine-free synthesis of high-quality CdSe nanocrystals in noncoordination solvents:’ activating agent’ and’ nucleating agent’ controlled nucleation and growth,” J. Phys. Chem. C 113, 8701–8709 (2009).CrossRefGoogle Scholar
  36. 36.
    M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, and U. Woggon, “Evolution from individual to collective electron state in a dense quantum dot ensemble,” Phys. Rev. B 60, 1504–1506 (1999).CrossRefGoogle Scholar
  37. 37.
    L.-J. Zhang, X.-C. Shen, H. Liang, and J.-T. Yao, “Multiply families of magic-size ZnSe via non-injection one-pot and hot-injection synthesis,” J. Phys. Chem. C 114, 21921–21927 (2010).CrossRefGoogle Scholar
  38. 38.
    B. M. Cossairt and J. S. Owen, “CdSe clusters: at the interface of small molecules and quantum dots,” Chem. Mater. 23, 3114–3119 (2011).CrossRefGoogle Scholar
  39. 39.
    Q. Yu and C.-Y. Liu, “Study of magic-size-cluster mediated formation of CdS nanocrystals: properties of magic-size clusters and mechanism implication,” J. Phys. Chem. C 113, 12766–12771 (2009).CrossRefGoogle Scholar
  40. 40.
    Z. Li, Y. Ji, R. Xie, S. Y. Grisham, and X. Peng, “Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development,” J. Am. Chem. Soc. 133, 17248–17256 (2011).CrossRefGoogle Scholar
  41. 41.
    R. E. Bailey and S. Nie, “Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size,” J. Am. Chem. Soc. 125, 7100–7106 (2003).CrossRefGoogle Scholar
  42. 42.
    M. D. Regulacio and M.-Y. Han, “Composition-tunable alloyed semiconductor nancorystals,” Acc. Chem. Rev. 43, 621–630 (2010).CrossRefGoogle Scholar
  43. 43.
    H. C. Poon, Z. C. Feng, Y. P. Feng, and M. F. Li, “Relativistic band structure of ternary II-VI semiconductor alloys containing Cd, Zn, Se and Te,” J. Phys.: Condens. Matter 7, 2783–2799 (1995).CrossRefGoogle Scholar
  44. 44.
    X. Zhong, M. Han, Z. Dong, T. J. White, and W. Knoll, “Composition tunable Zn{ti x}Cd1 − xSe nanocrystals with high luminescence and stability,” J. Am. Chem. Soc. 125, 8589–8594 (2003).CrossRefGoogle Scholar
  45. 45.
    X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009).CrossRefGoogle Scholar
  46. 46.
    H. Lee, P. H. Holloway, and H. Yang, “Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods,” J. Chem. Phys. 125, 164711 (2006).CrossRefGoogle Scholar
  47. 47.
    E. Jang, S. Jun, and L. Pu, “High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence,” Chem. Commun., 2964–2965 (2003).Google Scholar
  48. 48.
    F. C. Liu, T. L. Cheng, C. C. Shen, W. L. Tseng, and M. Y. Chiang, “Synthesis of cysteine-capped ZnxCd1 − xSe alloyed quantum dots emitted in the blue-green spectral range,” Langmuir 24, 2162–2167 (2008).CrossRefGoogle Scholar
  49. 49.
    A. M. Smith and S. Nie, “Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange,” J. Am. Chem. Soc. 133, 24–26 (2011).CrossRefGoogle Scholar
  50. 50.
    A. Prudnikau, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev, A. V. Baranov, S. A. Cherevkov, and A. V. Fedorov, “Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: spectroscopic and structural examination,” Mater Sci. Eng. B 177, 744–749 (2012).CrossRefGoogle Scholar
  51. 51.
    A. L. Rogach, A. Euchmüller, S. G. Hickey, and S. V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small 3, 536–557 (2007).CrossRefGoogle Scholar
  52. 52.
    F.-C. Liu, Y.-M. Chen, J.-H. Lin, and W. L. Tseng, “Synthesis of highly fluorescent glutatione-capped ZnxHg1 − xSe quantum dots and its application for sensing copper ions,” J. Coll. Interface. Sci. 337, 414–419 (2009).CrossRefGoogle Scholar
  53. 53.
    H. Quian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111, 16852–16857 (2007).CrossRefGoogle Scholar
  54. 54.
    S. Taniguchi, M. Green, and T. Lim, “The room temperature synthesis of anisotropic CdHgTe quantum dot alloys: a “molecular welding” effect,” J. Am. Chem. Soc. 133, 3328–3331 (2011).CrossRefGoogle Scholar
  55. 55.
    X. Zhong, Y. Feng, W. Knoll, and M. Han, “Alloyed ZnxCd1 − xSe nanocrystals with highly narrow luminescence spectral width,” J. Am. Chem. Soc. 125, 13559–13563 (2003).CrossRefGoogle Scholar
  56. 56.
    X. Zhong, Z. Zhang, S. Liu, M. Han, and W. Knoll, “Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1 − xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength,” J. Phys. Chem. B 108, 15552–15559 (2004).CrossRefGoogle Scholar
  57. 57.
    Z. Deng, H. Yan, and Y. Liu, “Band-gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method,” J. Am. Chem. Soc., 17744–17745 (2009).Google Scholar
  58. 58.
    T. Kim, S. W. Kim, M. Kang, and S.-W. Kim, “Large-scale synthesis of InPZnS alloy quantum dots with dodecanethiol as a composition controller,” J. Phys. Chem. Lett. 3, 214–218 (2012).CrossRefGoogle Scholar
  59. 59.
    L. Spanhel, M. Haase, H. Weller, and A. Henglein, “Photochemistry of colloidal semiconductors: 20. Surface modification and stability of strong luminescing CdS particles,” J. Am. Chem. Soc. 109, 5649–5655 (1987).CrossRefGoogle Scholar
  60. 60.
    M. J. Ferée, A. Watt, J. Warner, S. Cooper, N. Hecken- berg, and H. Rubinsztein-Dunlop, “Inorganic surface passivation of of PbS nanocrystals resulting in strong photoluminescent emission,” Nanotechnol. 14, 991–997 (2003).CrossRefGoogle Scholar
  61. 61.
    C. F. Hoener, K. A. Allan, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, “Demonstration of shell-core structure in layered cadmium selenide-zinc selenide small particles by X-ray photoelectron and Auger spectroscopies,” J. Phys. Chem. 96, 3812–3817 (1992).CrossRefGoogle Scholar
  62. 62.
    A. R. Kortran, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleaction and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micella media,” J. Am. Chem. Soc. 112, 1327–1332 (1990).CrossRefGoogle Scholar
  63. 63.
    M. A. Hines and P. Guyot-Sionnest, “Synthesis and characterization synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals,” J. Phys. Chem. 100, 468–471 (1996).CrossRefGoogle Scholar
  64. 64.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463–9475 (1997).CrossRefGoogle Scholar
  65. 65.
    M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, “Synthesis of luminescent thin film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe,” Chem. Mater. 8, 173–180 (1996).CrossRefGoogle Scholar
  66. 66.
    X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).CrossRefGoogle Scholar
  67. 67.
    J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).CrossRefGoogle Scholar
  68. 68.
    P. Reiss, J. Bleuse, and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett. 2, 781–784 (2002).CrossRefGoogle Scholar
  69. 69.
    J. M. Tsay, S. Doose, F. Pinaud, and S. Weiss, “Enhansing the photoluminescence of peptide-coated nanocrystals with shell composition and UV radiation,” J. Phys. Chem. B 109, 1669–1674 (2005).CrossRefGoogle Scholar
  70. 70.
    T. Mokari and U. Banin, “Synthesis and properties of CdSe/ZnS core/shell nanorods,” Chem. Mater. 15, 3955–3960 (2003).CrossRefGoogle Scholar
  71. 71.
    I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, and H. Weller, “One-pot synthesis of highly luminescent CdSe/CdS core/shell nanocrystals via organometallic and «greener» chemical approaches,” J. Phys. Chem. B 107, 7454–7462 (2003).CrossRefGoogle Scholar
  72. 72.
    S. J. Lim, B. Chon, T. Joo, and S. K. Shin, “Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and theit luminescence in water,” J. Phys. Chem. C 112, 1744–1747 (2008).CrossRefGoogle Scholar
  73. 73.
    H. S. Chen, B. Lo, J. Y. Hwang, G. Y. Chang, C. M. Chen, S. J. Tasi, and S. J. J. Wang, “Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO,” J. Phys. Chem. B 108, 17119–17123.Google Scholar
  74. 74.
    R. Zeng, T. Zhang, G. Dai, and B. Zou, “Highly emissive, color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals,” J. Phys. Chem. C 115, 3005–3010 (2011).CrossRefGoogle Scholar
  75. 75.
    A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).CrossRefGoogle Scholar
  76. 76.
    D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals,” J. Phys. Chem. B 108, 18826–18831 (2004).CrossRefGoogle Scholar
  77. 77.
    H. Zhu, A. Prakash, D. N. Benoit, C. J. Jones, and V. L. Colvin, “Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots,” Nanotechnol. 21, 255604 (2010).CrossRefGoogle Scholar
  78. 78.
    L. Manna, E. C. Scher, L. S. Li, and A. P. Alivisatos, “Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods,” J. Am. Chem. Soc. 124, 7136–7145 (2002).CrossRefGoogle Scholar
  79. 79.
    P. Yang, M. Ando, T. Taguchi, and N. Murase, “Highly luminescent CdSe/CdxZn1 − xS quantum dots with narrow spectrum and widely tunable wavelength,” J. Phys. Chem. C 115, 14455–14460 (2011).CrossRefGoogle Scholar
  80. 80.
    W. K. Bae, K. Char, H. Hur, and S. Lee, Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater 20, 531–539 (2008).CrossRefGoogle Scholar
  81. 81.
    D. Ratchford, K. Dziatkowski, T. Hartsfield, X. Li, Y. Gao, and Z. Tang, “Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface,” J. Appl. Phys. 109, 103509 (2011).CrossRefGoogle Scholar
  82. 82.
    S. K. Panda, S. G. Hickey, C. Waurisch, and A. Eych- müller, “Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications,” J. Mater. Chem. 21, 11550–11555 (2011).CrossRefGoogle Scholar
  83. 83.
    J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Lee, C. Jung, K. Char, and S. Lee, “InP-ZnSeS core-composition gradient shell quantum dots with enhanced stability,” Chem. Mater. 23, 4459–4463 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • P. S. Samokhvalov
    • 1
  • M. V. Artemyev
    • 1
    • 2
  • I. R. Nabiev
    • 1
    • 3
  1. 1.Laboratory of Nano-BioengineeringMoscow Engineering Physics InstituteMoscowRussia
  2. 2.Institute for Physico-Chemical ProblemsBelarusian State UniversityMinskBelarus
  3. 3.European Technological Platform Semiconductor Nanocrystals, Institute of Molecular MedicineTrinity College DublinDublin 8Ireland

Personalised recommendations