Nanotechnologies in Russia

, Volume 8, Issue 3–4, pp 239–244 | Cite as

Molecular dynamics study of Ag, Ar, Cu, Ni, Al, Fe, Ta, K, and Cs nanoclusters within the embedded atom model

Article

Abstract

The effect of the form of particle-particle potentials on the nanocluster structure has been investigated by the molecular-dynamics method. The nanocluster structure is characterized by multidimensional vectors of tetrahedral and octahedral indices for Delaunay simplexes. The similarity or distinction of the structures of a pair of clusters identical in size has been estimated from the distance between these vectors. Two groups of potentials have been applied: (1) multiparticle potentials of the embedded atom model (EAM), developed to describe fcc metals (Ag, Cu, Ni, and Al), and the Lennard-Jones pairwise potential for argon (fcc lattice) and (2) EAM potentials for bcc metals (Fe, Ta, K, and Cs). Nanoclusters with a number of atoms from 11 to 64 and of magic sizes (55, 147, 309, 561, and 923 atoms) have been investigated. In the case of nanoclusters with less than 27 atoms, the structure is independent of the affiliation of the potential to a certain group. If all potentials belong to the first group, clusters with magic sizes have the same (regular icosahedral) structure. In the case of second-group potentials, identical structures are found for only nanoclusters with no more than 29 atoms.

Keywords

Atom Cluster Stable Cluster Poten Tials Isothermal Exposure Embed Atom Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Doyama and Y. Kogure, Comput. Mater. Sci. 14, 80 (1999).CrossRefGoogle Scholar
  2. 2.
    A. Landa, P. Wynblatt, A. Girshick, V. Vitek, A. Ruban, and H. Skriver, Acta Mater. 46(9), 3027 (1998).CrossRefGoogle Scholar
  3. 3.
    X-Y. Liu, F. Ercolessi, and J. B. Adams, Model. Simulat. Mater. Sci. Eng. 12, 665–670 (2004).CrossRefGoogle Scholar
  4. 4.
    D. K. Belashchenko, Zh. Fiz. Khim. 80(5), 872–883 (2006).Google Scholar
  5. 5.
    M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Phil. Mag. A 83, 3977–3994 (2003).CrossRefGoogle Scholar
  6. 6.
    D. K. Belashchenko, Zh. Fiz. Khim. 83(2), 329–333 (2009).Google Scholar
  7. 7.
    D. K. Belashchenko, Teplofiz. Vys. Temp. 49 (2011).Google Scholar
  8. 8.
    D. L. Tytik, D. K. Belashchenko, and A. N. Sirenko, Zh. Strukt. Khim. 49(1), 115 (2008).Google Scholar
  9. 9.
    V. I. Kuz’min, D. L. Tytik, D. K. Belashchenko, and A. N. Sirenko, Kolloidn. Zh. 70(3), 316 (2008).Google Scholar
  10. 10.
    D. K. Belashchenko, A. N. Sirenko, and D. L. Tytik, Ross. Nanotekhnol., Nos. 9–10, 64 (2009).Google Scholar
  11. 11.
    V. I. Kuz’min, A. F. Gadzaov, D. L. Tytik, D. K. Belashchenko, A. N. Sirenko, Ross. Nanotekhnol., Nos. 11–12, 92 (2010).Google Scholar
  12. 12.
    D. K. Belashchenko, Zh. Fiz. Khim. 61(12), 3166 (1987).Google Scholar
  13. 13.
    D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Matters (MISiS, Moscow, 2005) [in Russian].Google Scholar
  14. 14.
    N. A. Bul’enkov, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, Ser. Fiz. Tverd. Tela, No. 1, 19 (1998).Google Scholar
  15. 15.
    N. A. Bulienkov, Quasicrystals and Discrete Geometry, Ed. by J. Patera (Amer. Mathem. Soc., Providence, RI, 1998), Vol. 10, p. 67.Google Scholar
  16. 16.
    N. A. Bul’enkov and D. L. Tytik, Izv. Russ. Acad. Nauk Ser. Khim. 50(1), 1 (2001).Google Scholar
  17. 17.
    F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371–417 (2005).CrossRefGoogle Scholar
  18. 18.
    X. Xing, R. Danell, I. Garzon, K. Michaelian, M. Blom, M. Burns, and J. Parks, Phys. Rev. B 72, 081405 (2005).CrossRefGoogle Scholar
  19. 19.
    M. Blom, D. Schooss, J. Stairs, and M. Kappes, J. Chem. Phys. 124, 244308 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.National University of Science and Technology (MISIS)MoscowRussia

Personalised recommendations