Nanotechnologies in Russia

, Volume 8, Issue 3–4, pp 163–185 | Cite as

Prospects of using carbonaceous nanoparticles in binders for polymer composites

Article

Abstract

Different aspects of using carbonaceous nanoparticles for the creation of polymer composites with improved physicomechanical and functional properties are considered. It is shown that functionalized car-bonaceous nanoparticles can be used as modifiers to control the process of curing and elastification of epoxy binders during the development of polymer composites for use in construction. The possibility of using nano-particle self-organization for conferring functional properties on composites and obtaining 3D-reinforced hybrid nanocomposites is investigated.

Keywords

Carbon Fiber Interfacial Shear Strength Epoxy Oligomer Glass Transition Temperature Epoxy Binder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. R. Badamshina, M. P. Gafurova, Ya. I. Estrin, “Carbon nanotubes modification and synthesis of polymeric composites with their paticipation,” Usp. Khim. 79(11), 1027–1063 (2010).CrossRefGoogle Scholar
  2. 2.
    S. M. Aldoshin, E. R. Badamshina, and E. N. Kablov, “Polymeric nanocomposites is the new generation of polymer materials with increased operating parameters,” in Proc. Int. Forum on Nanotechnologies “Rusnanotech 2008” (Moscow, 2008), p. 385.Google Scholar
  3. 3.
    E. G. Rakov, “Chemistry and application of carbon nanotubes,” Usp. Khim. 70(10), 934–973 (2001).CrossRefGoogle Scholar
  4. 4.
    S. P. Gubin, O. V. Popkov, G. Yu. Yurkov, V. N. Nikiforov, Yu. A. Koksharov, and N. K. Eremenko, “Magnetic nanoparticles fixed on the surface of detonation nanodiamond microgranules,” Diamond Relat. Mater. 16(11), 1924–1928 (2007).CrossRefGoogle Scholar
  5. 5.
    S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, “Magnetic nanoparticles: the way to produce, structure, properties,” Usp. Khim. 74(6) 539–574 (2005).CrossRefGoogle Scholar
  6. 6.
    D. Puglia, L. Valentini, and J. M. Kenny, “Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy,” J. Appl. Polymer Sci. 88, 452–458 (2003).CrossRefGoogle Scholar
  7. 7.
    L. Valentini, I. Armentano, D. Puglia, and J. M. Kenny, “Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy,” Carbon 42, 323–329 (2004).CrossRefGoogle Scholar
  8. 8.
    T. Zhou, X. Wangaand, and T. Wang, “Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole(MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polymer Int. 58, 445–452 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Wu and D. D. L Chung, “Calorimetric study of the effect of carbon fillers on the curing of epoxy,” Carbon 42, 3003–3042 (2004).CrossRefGoogle Scholar
  10. 10.
    H. Xie, B. Liu, Z. Yuan, J. Shen, and R. Cheng, “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry,” J. Polymer Sci.: Part B: Polymer Phys. 42, 3701–3712 (2004).CrossRefGoogle Scholar
  11. 11.
    L. Valentini, I. Armentano, D. Puglia, and J. M. Kenny, “Dynamics of amine functionalized nanotubes/epoxy composites by dielectric relaxation spectroscopy,” Carbon 42, 323–329 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Puglia, L. Valentini, I. Armentano, and J. M. Kenny, “Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy,” Diamond Relat. Mater. 12, 827–832 (2003).CrossRefGoogle Scholar
  13. 13.
    A. Visco, L. Calabrese, and C. Milone, “Cure rate and mechanical properties of a DGEBF epoxy resin modified with carbon nanotubes,” J. Reinf. Plast. Composit. 28, 937–949 (2009).CrossRefGoogle Scholar
  14. 14.
    V. G. Khozin, Epoxy Polymers Strengthening (Izd. PIK “Dom pechati”, Kazan, 2004) [in Russian].Google Scholar
  15. 15.
    A. F. Magsumova, “The way to improve the processes for producing units made of composites by controlling surface energy and interphase interaction,” Extended Abstract of Candidate’s Dissertation (2005).Google Scholar
  16. 16.
    R. V. Akatenkov, S. V. Kondrashov, A. S. Fokin, and P. S. Marakhovskii, “Features of polymer grids formation under curing of epoxy oligomers with functionalized nanotubes,” Aviats. Mater. Tekhnol., No. 2, 31–37 (2011).Google Scholar
  17. 17.
    A. Allaoui and N. El Bounia, “How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?,” eXPRESS Polym. Lett. 3(9), 588–594 (2009).CrossRefGoogle Scholar
  18. 18.
    F. Hernandez-Pereza, F. Avilesa, A. May-Pata, A. Valadez-Gonzaleza, P. J. Herrera-Francoa, and P. Bartolo-Perez, “Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes,” Composit. Sci. Technol. 68, 1422–1431 (2008).CrossRefGoogle Scholar
  19. 19.
    R. V. Akatenkov, V. M. Aleksashin, I. V. Anoshkin, A. N. Babin, V. A. Bogatov, V. P. Grachev, S. V. Kondrashov, V. T. Minakov, and E. G. Rakov, “Effect of small quantity of functionalized nanotubes onto physical-mechanical properties and structure of epoxy composites,” Deform. Razrush. Mater., No. 11, 35–40 (2011).Google Scholar
  20. 20.
    S. Wang, R. Liang, T. Liu, B. Wang, and C. Zhang, “Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites,” Nanotecnol. 17, 1551–1557 (2006).CrossRefGoogle Scholar
  21. 21.
    S. Wang, R. Liang, T. Liu, B. Wang, and C. Zhang, “Covalent addition of diethyltoluenediamines onto carbon nanotubes for composite application,” Polym. Compos. 30(8), 1050–1057 (2009).CrossRefGoogle Scholar
  22. 22.
    J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Composites: Part A 38, 1331–1336 (2007).CrossRefGoogle Scholar
  23. 23.
    J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites,” Composit. Sci. Technol. 67, 3041–3050 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Wang, Z. Fang, A. Gu, L. Xu, and Fu Liu, “Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix,” J. Appl. Polymer Sci. 100, 97–104 (2006).CrossRefGoogle Scholar
  25. 25.
    J. Zhy, H. Peng, F. Rodriguez, J. L. Margrave, V. N. Khabashesky, A. M. Imam, K. Lozano, E. V. Barera, “Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes,” Adv. Funct. Mater. 14(7), 643–648 (2004).CrossRefGoogle Scholar
  26. 26.
    C.-H. Tseng, C.-C. Wang, and C. Y. Chen, “Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites,” Chem. Mater. 19, 308–315 (2007).CrossRefGoogle Scholar
  27. 27.
    W. J. Choi, R. L. Powell, and D. S. Kim, “Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes,” Polymer Composite 30(4), 415–421 (2009).CrossRefGoogle Scholar
  28. 28.
    J. T. Kim, H.-C. Kim, S.-K. Kim, and J. Kathi, “3-aminopropyltriethoxysilane effect on thermal and mechanical properties of multi-walled carbon nanotubes reinforced epoxy composites,” J. Composite Mater. 43(22), 2533–2541 (2009).CrossRefGoogle Scholar
  29. 29.
    G. Sui, W. H. Zhona, M. C. Liu, and P. H. Wu, “Enhancing mechanical properties of an epoxy resin using “Liquid nano-reinforcements”,” Mater. Sci. Eng. A 512, 139–142 (2009).CrossRefGoogle Scholar
  30. 30.
    M. L. Auad, M. A. Mosiewicki, C. Uzunpinar, and R. J. J. Williams, “Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface,” Polymer Eng. Sci. 50(1), 183–190 (2010).CrossRefGoogle Scholar
  31. 31.
    Yu. A. Mikhailin, Thermo-Resistant Polymers and Polymeric Materials (Professiya, St. Petersburg, 2006) [in Russian].Google Scholar
  32. 32.
    G. V. Korolev, M. M. Mogilevich, and I. V. Golikov, Cross-Linked Polyacrilates. Microheterogeneous Structures, Physical Grids, Deformation-Strength Properties (Khimiya, Moscow, 1995) [in Russian].Google Scholar
  33. 33.
    A. N. Ponomarev, “Nanotechnology and nanostructure materials,” Industriya, No. 1, 14–15 (2002).Google Scholar
  34. 34.
    S. V. Kondrashov, V. A. Bogatov, T. P. D’yachkova, I. A. Mansurova, P. S. Marakhovskii, I. A. Mokretsova, and A. S. Fokin, “The way to raise the heat resistance of epoxy binder by using carbon nanotubes,” Perspekt. Mater. (2013) (in press).Google Scholar
  35. 35.
    G. M. Gunyaev, L. V. Chursova, O. A. Komarova, and A. G. Gunyaeva, “Structure carbonplastics modified by nanoparticles,” in Appendix to the Journal “Aviation Materials and Technologies” (VIAM, Moscow, 2012), pp. 277–286 [in Russian].Google Scholar
  36. 36.
    F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study,” Composit. Sci. Technol. 65, 2300–2313 (2005).CrossRefGoogle Scholar
  37. 37.
    F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fied- ler, and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composit. Sci. Technol. 64, 2363–2371 (2004).CrossRefGoogle Scholar
  38. 38.
    R. V. Akatenkov, K. R. Akhmadeeva, V. A. Bogatov, S. V. Kondrashov, P. S. Marakhovskii, and A. S. Fokin, RF Patent No. 2011118714 (16.07.2012).Google Scholar
  39. 39.
    T. Villmow, B. Kretzschmar, and P. Pötschke, “Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites,” Composit. Sci. Technol. 70, 2045–2055 (2010).CrossRefGoogle Scholar
  40. 40.
    B. Krause, R. Boldt, and P. Pötschke, “A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing,” Carbon 49(4), 1243–1247 (2011).CrossRefGoogle Scholar
  41. 41.
    G. R. Kasaliwal, S. Pegel, A. Göldel, P. Pötschke, and G. Heinrich, “Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate,” Polymer 51, 2708–2720 (2010).CrossRefGoogle Scholar
  42. 42.
    S. Pegela, P. Potschkea, G. Petzold, I. Alig, S. M. Dudkin, and D. Lellinger, “Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts,” Polymer 49, 974–984 (2008).CrossRefGoogle Scholar
  43. 43.
    J.-H. Du, J. Bai, and H.-M. Cheng, “The present status and key problems of carbon nanotube based polymer composites,” eXPRESS Polymer Lett. 1(5), 253–273 (2007).CrossRefGoogle Scholar
  44. 44.
    K. Yu, Z. Zhang, Y. Liu, and J. Leng, “Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity,” Appl. Phys. Lett. 98, 074102–074104 (2011).CrossRefGoogle Scholar
  45. 45.
    Y. Huang, L. Ning, M. Yanfeng, D. Feng, L. Feifei, H. Xiaobo, L. Xiao, G. Hongjun, and C. Yongsheng, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon 10, 1016–1028 (2007).Google Scholar
  46. 46.
    X. Changshu, P. Yubai, L. Xuejian, S. Xingwei, S. Xiaomei, and G. Jingkun, “Microwave attenuation of multi-walled carbon nanotube-fused silica composites,” Appl. Phys. Lett. 87, 123103–123105 (2005).CrossRefGoogle Scholar
  47. 47.
    V. E. Muradyan, E. A. Sokolov, S. D. Babenko, and A. P. Moravskii, “Dielectric properties of composites modified by carbon nanostructures in the microwave band,” Zh. Tekh. Fiz. 80(2), 83–87 (2010).Google Scholar
  48. 48.
    B. De. Vivo, L. Guadagno, P. Lambeerrttii, R. Raimo, M. S. Sarto, A. Tamburrano, V. Tucci, and L. Vertuccio, “Electromagnetic properties of carbon nanotube/epoxy nanocomposites,” in IEEE Conf. “2009 EMC Europe Workshop Materials and Applications” (Athenes, June 11–12, 2009).Google Scholar
  49. 49.
    Q. Huang, T. B. Holland, A. K. Mukherjee, E. Chojnack, M. Malloy, and M. Tigner, “Carbon nanotube RF absorbing materials,” in Proc. SRF2009 (Berlin, 2009).Google Scholar
  50. 50.
    R. K. Challa, D. Kajfez, V. Demir, J. R. Gladden, and A. Z. Elsherbeni, “Characterization of multiwalled carbon nanotube (MWCNT) composites in a waveguide of square cross section,” IEEE Microwave Wireless Components Lett. 18(3), 161–163 (2008).CrossRefGoogle Scholar
  51. 51.
    L. Ning, Y. Huang, D. Feng, H. Xiaobo, L. Xiao, G. Hongjun, M. Yanfeng, L. Feifei, C. Yongsheng, and P. C. Eklun, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).CrossRefGoogle Scholar
  52. 52.
    X. Hua and S. M. Anlage, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90, 183119–183121 (2007).CrossRefGoogle Scholar
  53. 53.
    X. Hu, Z. Shixong, and S. M. Anlage, “Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density,” Phys. Rev. B 77, 075418–075423 (2008).CrossRefGoogle Scholar
  54. 54.
    R. V. Akatenkov, I. V. Anoshkin, A. A. Belyaev, V. V. Bitt, V. A. Bogatov, T. P. D’yachkova, K. E. Kutsevich, S. V. Kondrashov, A. M. Romanov, V. V. Shirokov, and N. V. Khorobrov, “Effect of carbon nanotubes structure organization onto radio shielding and electroconducting nanocomposites properties,” Aviats. Mater. Tekhnol., No. 1, 35–42 (2011).Google Scholar
  55. 55.
    E. Bekyarova, M. E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, and R. C. Haddon, “Electronic properties of single-walled carbon nanotube networks,” J. Am. Chem. Soc., No. 127, 5990–5995 (2005).Google Scholar
  56. 56.
    G. M. Gunyaev, L. V. Chursova, A. E. Raskutin, G. V. Nachinkina, A. G. Gunyaeva, and V. M. Kuprienko, “Lightning-proof coatings for structure carbon plastics, containing nanoparticles,” in All Materials. Encyclopedia (2012), No. 3, pp. 24–35.Google Scholar
  57. 57.
    E. N. Kablov, G. M. Gunyaev, S. I. Il’chenko, A. N. Ponomarev, T. N. Kavun, O. A. Komarova, and A. E. Kopylov, RF Patent No. 2217320 (27.11.2003).Google Scholar
  58. 58.
    G. M. Gunyaev, L. V. Chursova, A. E. Raskutin, and A. G. Gunyaeva, “Lightning-proof of modern polymeric composites,” Aviats. Mater. Tekhnol., No. 2, 36–42 (2012).Google Scholar
  59. 59.
    G. M. Gunyaev, E. N. Kablov, and V. M. Aleksashin, “The way to modify carbon plastics by carbon nanotubes,” Ross. Khim. Zh. (Zh. Ross. Khim. Obsch. im. D. I. Mendeleeva) 54(1), 5–11 (2010).Google Scholar
  60. 60.
    G. Lubineau and A. Rahaman, “A Review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements,” Carbon 50, 2377–2395 (2012).CrossRefGoogle Scholar
  61. 61.
    Z. Shen, H. Ching, S. Lehoczky, I. Muntele, and D. Ila, “Carbon nanotube growth on carbon fibers,” Diamond Relat. Mater. 12(10–11), 1825–1838 (2003).Google Scholar
  62. 62.
    K. Otsuka, Y. Abe, N. Kanai, Y. Kobayashi, S. Takenaka, and E. Tanabe, “Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions,” Carbon 42(4), 727–736 (2004).CrossRefGoogle Scholar
  63. 63.
    Z. R. Ismagilov, N. V. Shikina, V. N. Kruchinin, N. A. Rudina, V. A. Ushakov, N. T. Vasenin, and H. J. Veringa, “Development of methods of growing carbon nanofibers on silica glass fiber supports,” Catalysis Today 102–103, 85–93 (2005).Google Scholar
  64. 64.
    W. Down and R. Baker, “Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers,” J. Mater. Res. 10, 625–633 (1995).CrossRefGoogle Scholar
  65. 65.
    H. Qian, A. Bismarck, E. S. Greenhalgh, and M. S. Shaffer, “Carbon nanotube grafted silica fibers: characterizing the interface at the single fiber level,” Compos. Sci. Technol. 70(2), 393–399 (2010).CrossRefGoogle Scholar
  66. 66.
    R. J. Sager, P. J. Klein, D. C. Lagoudas, Q. Zhang, J. Liu, L. Dai, and L. W. Baur, “Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix,” Compos. Sci. Technol. 69, 898–904 (2009).CrossRefGoogle Scholar
  67. 67.
    H. Qian, A. Bismarck, E. Greehalgh, G. Kalinka, and M. Shaffer, “Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level,” Chem. Mater. 20, 1862–1869 (2008).CrossRefGoogle Scholar
  68. 68.
    E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, and R. C. Haddon, “Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites,” Langmuir 23, 3970–3974 (2007).CrossRefGoogle Scholar
  69. 69.
    J. Zhang, R. Zhuang, J. Liu, E. Ma, G. Heinrich, and S. Gao, “Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites,” Carbon 48, 2273–2281 (2010).CrossRefGoogle Scholar
  70. 70.
    A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. van Vuure, S. V. Lomov, and I. Verpoest, “Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes,” Composit. Sci. Technol. 70, 1346–1352 (2010).CrossRefGoogle Scholar
  71. 71.
    S.-L. Gao, E. Ma, and R. Plonka, “Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion,” Composit. Sci. Technol. 68, 2892–2901 (2008).CrossRefGoogle Scholar
  72. 72.
    F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites,” Chem. Phys. Lett. 370, 820–824 (2003).CrossRefGoogle Scholar
  73. 73.
    E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T.-W. Chou, and R. C. Haddon, “Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites,” J. Phys. Chem. C 111, 17865–17871 (2007).CrossRefGoogle Scholar
  74. 74.
    J. Cho, J. Y. Chen, and I. M. Daniel, “Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement,” Scripta Mater. 56, 685–688 (2007).CrossRefGoogle Scholar
  75. 75.
    F. H. Gojny, M. H. G. Wichmann, B. Fiedler, W. Bauhofer, and K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Composites: Part A 36, 1525–1535 (2005).CrossRefGoogle Scholar
  76. 76.
    J. Qiu, C. Zhang, B. Wang, and R. Liang, “Carbon nanotube integrated multifunctional multiscale composites,” Nanotecnol. 18, 275708–275718 (2007).CrossRefGoogle Scholar
  77. 77.
    V. C. S. Chandrasekaran, S. G. Advani, and M. H. Santare, “Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites,” Carbon 48, 3692–3699 (2010).CrossRefGoogle Scholar
  78. 78.
    Z. Fan, K.-T. Hsiao, and S. G. Advani, “Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media,” Carbon 42(4), 871–876 (2004).CrossRefGoogle Scholar
  79. 79.
    Z. Fan, W. Tang, K.-T. Hsiao, and S. G. Advani, “Flow and dispersion of multiwalled carbon nanotubes in polymer and fiberglass reinforced polymer composites,” Proc. 2004 NSF Design, Service and Manufacturing Grantees and Research Conf. (Dallas, Jan. 5–8, 2004).Google Scholar
  80. 80.
    K.-T. Hsiao, “Manufacturing of functionally graded hybrid carbon nanotube/fiber glass composites,” Report at University of South Alabama Research Council (USARC) (June 30, 2005).Google Scholar
  81. 81.
    K.-T. Hsiao, S. Sadeghian, and G. Sudhir, “Manufacturing and characterization of hybrid carbon nanofibers-glass fibers polymer composites,” in Proc. 12th Annu. USA Research Forum (Univ. of South Alabama, Apr. 11–15, 2005).Google Scholar
  82. 82.
    R. Sadeghian, S. Gangireddy, B. Minaie, and K.-T. Hsiao, “Model delamination characterization for carbon nanofibers toughened polyester/glassfiber composites,” in Proc. 50th Int. Society for Advancement of Material and Process Engineering (SAMPE) Symp. and Exhibition (Long Beach, CA, May 1–5, 2005).Google Scholar
  83. 83.
    L. Gorbatikh, S. V. Lomov, and I. Verpoest, Nanoengineered composites: a multiscale approach for adding toughness to fibre reinforced composites,” Proc. Eng. 10, 3252–3258 (2011).CrossRefGoogle Scholar
  84. 84.
    F. Inam, D. W. Y. Wong, M. Kuwata, and T. Peijs, “Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers,” J. Nanomater., 453420–453431 (2010).Google Scholar
  85. 85.
    E. J. Garcia, B. L. Wardle, and A. J. Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Composites Part A 39, 1065–1070 (2008).CrossRefGoogle Scholar
  86. 86.
    Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, and Y. Chen, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon 45(8), 1614–1621 (2007).CrossRefGoogle Scholar
  87. 87.
    Z. Wang, Z. Liang, B. Wang, C. Zhang, and L. Kramer, “Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites,” Composites Part A 35, 1225–1232 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. N. Kablov
    • 1
  • S. V. Kondrashov
    • 1
  • G. Yu. Yurkov
    • 1
    • 2
  1. 1.All-Russian Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Baikov Institute for Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations