Nanotechnologies in Russia

, Volume 8, Issue 1–2, pp 46–53 | Cite as

Molecular refrigerator and thermoelectric phenomena under conditions of tunnel-resonance conductance



The theory of thermoelectric phenomena in a metal-molecule-metal conjunction has been developed in the case of resonance conduction through the molecule. It has been shown that the resonance current may cool one of the electrodes at the biases when the resonance level is near the Fermi level: at the electron resonance, the electron resonance level should be above the Fermi level of the cooled cathode and, at the hole resonance, the hole resonance level should be below the Fermi level of the cooled anode. The energy flux cooling the electrode is proportional to the resonance current, and each electron of the current removes energy somewhat higher than kT from the corresponding electrode. Such a molecular refrigerator is effective, while kT is higher than the total width of the resonance level. Peltier and Seebeck coefficients have been found for the case when the resonance level is near the Fermi level already at the zero bias.


Fermi Level Seebeck Coefficient Resonance Current Pentacene Thermal Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Nitzan and M. A. Ratner, “Electron Transport in Molecular Wire,” Science 300, 1384 (2003).CrossRefGoogle Scholar
  2. 2.
    N. J. Tao, “Electron Transport in Molecular Junctions,” Nature Nanotechn. 1, 173 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Karthäuser, “Control of Molecule-Based Transport for Future Molecular Devices,” J. Phys.: Condens. Matter 23, 013001 (2011).CrossRefGoogle Scholar
  4. 4.
    K. L. Grosse, M.-H. Bae, F. Lian, E. Pop, and W. P. King, “Nanoscale Joule Heating, Peltier Cooling and Current Crowding at Graphene-Metal Contacts,” Nature Nanotechn. 6, 287 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Shimada, Y. Ikuta, Y. Tsuchida, M. Ohtomo, and T. Hasegawa, “Computational Analysis of Thermal Energetic Disorder in a Pentacene Crystal: Temperature Dependence of Trap Levels and Possible Novel Thermoelectric Contribution,” Appl. Phys. Express 4, 061601 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Tan, S. Sadat, and P. Reddy, “Measurement of Thermopower and Current-Voltage Characteristics of Molecular Junctions to Identify Orbital Alignment,” Appl. Phys. Lett. 96, 013110 (2010).CrossRefGoogle Scholar
  7. 7.
    D. I. Bolgov, M. A. Kozhushner, R. R. Muriasov, and V. S. Posvianskii, “Multicenter Scattering Theory of Mediator Effect in Electron Tunneling Transitions,” J. Chem. Phys. 119, 3871 (2003).CrossRefGoogle Scholar
  8. 8.
    G. D. Mahan and J. O. Sofo, “The Best Thermoelectric,” Proc. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRefGoogle Scholar
  9. 9.
    Y. Dubi and M. Di Ventra, “Colloquium: Heat Flow and Thermo Electricity in Atomic and Molecular Junctions,” Rev. Mod. Phys. 83, 131 (2011).CrossRefGoogle Scholar
  10. 10.
    C. M. Finch, V. M. Garcia-Suarez, and C. J. Lambert, “Giant Thermopower and Figure of Merit in Single-Molecule Devices,” Phys. Rev. B 79, 033405 (2009).CrossRefGoogle Scholar
  11. 11.
    J. P. Bergfield and C. A. Stafford, “Thermoelectric Signatures of Coherent Transport in Single-Molecule Heterojunctions,” Nano Lett. 9, 3072 (2009).CrossRefGoogle Scholar
  12. 12.
    M. A. Kozhushner, I. I. Oleynik, V. S. Posvyanskii, and L. Yu, “Rectification Mechanism in Di-Block Oligomer Molecular Diod,” Phys. Rev. Lett. 96, 096803 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Datta, Quantum Transport: From Atom to Transistor (Cambridge Univ. Press, Cambridge, 2005).CrossRefGoogle Scholar
  14. 14.
    M. A. Kozhushner, V. S. Posvyanskii, and I. I. Oleynik, “Tunneling and Resonant Conductance in One-Dimensional Molecular Structures,” Chem. Phys. 319, 368 (2005).CrossRefGoogle Scholar
  15. 15.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (GIFML, Moscow, 1962) [in Russian].Google Scholar
  16. 16.
    O. V. Gritsenko and E. J. Baerends, “Physical Interpretation and Evaluation of the Kohn-Sham and Dyson Components of the e-I Relations between the Kohn-Sham Orbital Energies and the Ionization Potentials,” J. Chem. Phys. 119, 1937 (2003).CrossRefGoogle Scholar
  17. 17.
    Yu. Dahnovsky, V. G. Zakrzewski, A. Kletsov, and J. V. Ortiz, “Ab initio Electron Propagator Theory of Molecular Wires. I. Formalism,” J. Chem. Phys. 123, 184711 (2005).CrossRefGoogle Scholar
  18. 18.
    L. Adamska, M. A. Kozhushner, and I. I. Oleynik, “Electron-Plasmon Interactions in Resonant Molecular Tunnel Junctions,” Phys. Rev. B 80, 108947 (2010).Google Scholar
  19. 19.
    M. P. Samanta, W. Tian, S. Datt, et al., “Electronic Conduction through Organic Molecules,” Phys. Rev. B 53, 7626 (1996).CrossRefGoogle Scholar
  20. 20.
    C. Toher and S. Sanvito, “Efficient Atomic Self-Interaction Correction Scheme for Nonequilibrium Quantum Transport,” Phys. Rev. Lett. 99, 056801 (2007).CrossRefGoogle Scholar
  21. 21.
    J. Taylor, M. Brandbyge, and K. Stokbro, “Conductance Switching in a Molecular Device: The Role of Side Groups and Intermolecular Interactions,” Phys. Rev. B 68, 121101 (2003).CrossRefGoogle Scholar
  22. 22.
    D. Natelson, L. H. Yu, J. W. Ciszek, et al., “Single-Molecule Transistors: Electron Transfer in the Solid State,” Chem. Phys. 324, 267 (2006).CrossRefGoogle Scholar
  23. 23.
    J. P. Bergfield and C. A. Stafford, “Many-Body Theory of Electronic Transport in Single-Molecule Heterojunctions,” Phys. Rev. B 79, 245125 (2009).CrossRefGoogle Scholar
  24. 24.
    M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular Transport Junctions: Vibrational Effects,” J. Phys.: Condens. Matter 19, 103201 (2007).CrossRefGoogle Scholar
  25. 25.
    M. Galperin and A. Nitzan, “NEGF-HF Method in Molecular Junction Property Calculations,” Ann. Acad. Sci. New York 1006, 48 (2003).CrossRefGoogle Scholar
  26. 26.
    M. Galperin, A. Nitzan, and M. A. Ratner, “Inelastic Tunneling Effects on Noise Properties of Molecular Junctions,” Phys. Rev. B 73, 045314 (2006).CrossRefGoogle Scholar
  27. 27.
    M. K. Ng, D. C. Lee, and L. P. Yu, “Molecular Diodes Based on Conjugated Diblock Co-Oligomers,” J. Am. Chem. Soc. 124, 11862 (2002).CrossRefGoogle Scholar
  28. 28.
    I. Diez-Perez, J. Hihath and Y. Lee, et al., “Rectification and Stability of a Single Molecular Diode with Controlled Orientation,” Nature Chem. 1, 635 (2009).CrossRefGoogle Scholar
  29. 29.
    M. A. Kozhushner and I. I. Oleinik, “Molecular Oscillation Excitation by Resonant Current,” Zh. Eksp. Teor. Fiz. 142(10) (2012).Google Scholar
  30. 30.
    A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology (Gordon and Breach, New York, 1995).Google Scholar
  31. 31.
    S. I. Pekar, “The Theory of F-Centers,” Zh. Eksp. Teor. Fiz. 20, 50 (1950).Google Scholar
  32. 32.
    Kun. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centers,” Proc. Roy. Soc. A 204, 406 (1950).CrossRefGoogle Scholar
  33. 33.
    Yu. E. Perlin, “Modern Methods of Multiphoton Processes Theory,” Usp. Fiz. Nauk 80, 553 (1963).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations