Skip to main content
Log in

Molecular refrigerator and thermoelectric phenomena under conditions of tunnel-resonance conductance

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The theory of thermoelectric phenomena in a metal-molecule-metal conjunction has been developed in the case of resonance conduction through the molecule. It has been shown that the resonance current may cool one of the electrodes at the biases when the resonance level is near the Fermi level: at the electron resonance, the electron resonance level should be above the Fermi level of the cooled cathode and, at the hole resonance, the hole resonance level should be below the Fermi level of the cooled anode. The energy flux cooling the electrode is proportional to the resonance current, and each electron of the current removes energy somewhat higher than kT from the corresponding electrode. Such a molecular refrigerator is effective, while kT is higher than the total width of the resonance level. Peltier and Seebeck coefficients have been found for the case when the resonance level is near the Fermi level already at the zero bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nitzan and M. A. Ratner, “Electron Transport in Molecular Wire,” Science 300, 1384 (2003).

    Article  CAS  Google Scholar 

  2. N. J. Tao, “Electron Transport in Molecular Junctions,” Nature Nanotechn. 1, 173 (2006).

    Article  CAS  Google Scholar 

  3. S. Karthäuser, “Control of Molecule-Based Transport for Future Molecular Devices,” J. Phys.: Condens. Matter 23, 013001 (2011).

    Article  Google Scholar 

  4. K. L. Grosse, M.-H. Bae, F. Lian, E. Pop, and W. P. King, “Nanoscale Joule Heating, Peltier Cooling and Current Crowding at Graphene-Metal Contacts,” Nature Nanotechn. 6, 287 (2011).

    Article  CAS  Google Scholar 

  5. T. Shimada, Y. Ikuta, Y. Tsuchida, M. Ohtomo, and T. Hasegawa, “Computational Analysis of Thermal Energetic Disorder in a Pentacene Crystal: Temperature Dependence of Trap Levels and Possible Novel Thermoelectric Contribution,” Appl. Phys. Express 4, 061601 (2011).

    Article  Google Scholar 

  6. A. Tan, S. Sadat, and P. Reddy, “Measurement of Thermopower and Current-Voltage Characteristics of Molecular Junctions to Identify Orbital Alignment,” Appl. Phys. Lett. 96, 013110 (2010).

    Article  Google Scholar 

  7. D. I. Bolgov, M. A. Kozhushner, R. R. Muriasov, and V. S. Posvianskii, “Multicenter Scattering Theory of Mediator Effect in Electron Tunneling Transitions,” J. Chem. Phys. 119, 3871 (2003).

    Article  CAS  Google Scholar 

  8. G. D. Mahan and J. O. Sofo, “The Best Thermoelectric,” Proc. Natl. Acad. Sci. USA 93, 7436 (1996).

    Article  CAS  Google Scholar 

  9. Y. Dubi and M. Di Ventra, “Colloquium: Heat Flow and Thermo Electricity in Atomic and Molecular Junctions,” Rev. Mod. Phys. 83, 131 (2011).

    Article  CAS  Google Scholar 

  10. C. M. Finch, V. M. Garcia-Suarez, and C. J. Lambert, “Giant Thermopower and Figure of Merit in Single-Molecule Devices,” Phys. Rev. B 79, 033405 (2009).

    Article  Google Scholar 

  11. J. P. Bergfield and C. A. Stafford, “Thermoelectric Signatures of Coherent Transport in Single-Molecule Heterojunctions,” Nano Lett. 9, 3072 (2009).

    Article  CAS  Google Scholar 

  12. M. A. Kozhushner, I. I. Oleynik, V. S. Posvyanskii, and L. Yu, “Rectification Mechanism in Di-Block Oligomer Molecular Diod,” Phys. Rev. Lett. 96, 096803 (2006).

    Article  Google Scholar 

  13. S. Datta, Quantum Transport: From Atom to Transistor (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  14. M. A. Kozhushner, V. S. Posvyanskii, and I. I. Oleynik, “Tunneling and Resonant Conductance in One-Dimensional Molecular Structures,” Chem. Phys. 319, 368 (2005).

    Article  CAS  Google Scholar 

  15. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (GIFML, Moscow, 1962) [in Russian].

    Google Scholar 

  16. O. V. Gritsenko and E. J. Baerends, “Physical Interpretation and Evaluation of the Kohn-Sham and Dyson Components of the e-I Relations between the Kohn-Sham Orbital Energies and the Ionization Potentials,” J. Chem. Phys. 119, 1937 (2003).

    Article  CAS  Google Scholar 

  17. Yu. Dahnovsky, V. G. Zakrzewski, A. Kletsov, and J. V. Ortiz, “Ab initio Electron Propagator Theory of Molecular Wires. I. Formalism,” J. Chem. Phys. 123, 184711 (2005).

    Article  Google Scholar 

  18. L. Adamska, M. A. Kozhushner, and I. I. Oleynik, “Electron-Plasmon Interactions in Resonant Molecular Tunnel Junctions,” Phys. Rev. B 80, 108947 (2010).

    Google Scholar 

  19. M. P. Samanta, W. Tian, S. Datt, et al., “Electronic Conduction through Organic Molecules,” Phys. Rev. B 53, 7626 (1996).

    Article  Google Scholar 

  20. C. Toher and S. Sanvito, “Efficient Atomic Self-Interaction Correction Scheme for Nonequilibrium Quantum Transport,” Phys. Rev. Lett. 99, 056801 (2007).

    Article  CAS  Google Scholar 

  21. J. Taylor, M. Brandbyge, and K. Stokbro, “Conductance Switching in a Molecular Device: The Role of Side Groups and Intermolecular Interactions,” Phys. Rev. B 68, 121101 (2003).

    Article  Google Scholar 

  22. D. Natelson, L. H. Yu, J. W. Ciszek, et al., “Single-Molecule Transistors: Electron Transfer in the Solid State,” Chem. Phys. 324, 267 (2006).

    Article  CAS  Google Scholar 

  23. J. P. Bergfield and C. A. Stafford, “Many-Body Theory of Electronic Transport in Single-Molecule Heterojunctions,” Phys. Rev. B 79, 245125 (2009).

    Article  Google Scholar 

  24. M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular Transport Junctions: Vibrational Effects,” J. Phys.: Condens. Matter 19, 103201 (2007).

    Article  Google Scholar 

  25. M. Galperin and A. Nitzan, “NEGF-HF Method in Molecular Junction Property Calculations,” Ann. Acad. Sci. New York 1006, 48 (2003).

    Article  CAS  Google Scholar 

  26. M. Galperin, A. Nitzan, and M. A. Ratner, “Inelastic Tunneling Effects on Noise Properties of Molecular Junctions,” Phys. Rev. B 73, 045314 (2006).

    Article  Google Scholar 

  27. M. K. Ng, D. C. Lee, and L. P. Yu, “Molecular Diodes Based on Conjugated Diblock Co-Oligomers,” J. Am. Chem. Soc. 124, 11862 (2002).

    Article  CAS  Google Scholar 

  28. I. Diez-Perez, J. Hihath and Y. Lee, et al., “Rectification and Stability of a Single Molecular Diode with Controlled Orientation,” Nature Chem. 1, 635 (2009).

    Article  CAS  Google Scholar 

  29. M. A. Kozhushner and I. I. Oleinik, “Molecular Oscillation Excitation by Resonant Current,” Zh. Eksp. Teor. Fiz. 142(10) (2012).

  30. A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology (Gordon and Breach, New York, 1995).

    Google Scholar 

  31. S. I. Pekar, “The Theory of F-Centers,” Zh. Eksp. Teor. Fiz. 20, 50 (1950).

    Google Scholar 

  32. Kun. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centers,” Proc. Roy. Soc. A 204, 406 (1950).

    Article  CAS  Google Scholar 

  33. Yu. E. Perlin, “Modern Methods of Multiphoton Processes Theory,” Usp. Fiz. Nauk 80, 553 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kozhushner.

Additional information

Original Russian Text © M.A. Kozhushner, 2013, published in Rossiiskie Nanotekhnologii, 2013, Vol. 8, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhushner, M.A. Molecular refrigerator and thermoelectric phenomena under conditions of tunnel-resonance conductance. Nanotechnol Russia 8, 46–53 (2013). https://doi.org/10.1134/S1995078013010060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078013010060

Keywords

Navigation