Advertisement

Nanotechnologies in Russia

, Volume 7, Issue 11–12, pp 604–614 | Cite as

Development of the low-temperature sol-gel synthesis of TiO2 to provide self-cleaning effect on the textile materials

  • O. L. Galkina
  • V. V. Vinogradov
  • A. V. Vinogradov
  • A. V. Agafonov
Article

Abstract

This work is devoted to the development of “smart textiles” possessing high photocatalytic activity in the decomposition of organic compounds. To modify cotton fibers, the nanocrystalline TiO2 sol was used. 1,2,3,4-Butane tetracarboxylic acid was used as a spacer. Photoactive nanoparticles were formed as a result of low-temperature sol-gel synthesis, leading to the formation of titanium dioxide of anatase-brookite modification. The self-cleaning properties of the modified textile materials were estimated by the decomposition of Rhodamine B under UV irradiation.

Keywords

Cotton Fabric Cotton Fiber Sodium Hypophosphite Cellulose Pyrolysis Cleaning Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Agafonov and A. V. Vinogradov, Khim. Vys. Energ. 42(7), 79–81 (2008).Google Scholar
  2. 2.
    A. V. Agafonov and A. V. Vinogradov, “Sol-Gel Synthesis, Preparation and Characterization of Photoactive TiO2 with Ultrasound Treatment,” J. Sol-Gel Sci. Technol. 49, 180–185 (2009).CrossRefGoogle Scholar
  3. 3.
    O. L. Galkina, V. V. Vinogradov, A. V. Agafonov, and A. V. Vinogradov, “Surfactant-Assisted Sol-Gel Synthesis of TiO2 with Uniform Particle Size Distribution,” Int. J. Inorg. Chem. 2011, 108087 (2011).Google Scholar
  4. 4.
    A. V. Vinogradov, A. V. Agafonov, and V. V. Vinogradov, “Sol-Gel Synthesis of Photochromic Films via Silver-Titania Nanocomposites Prepared without Heat Treatment,” Mendeleev Commun. 22, 1–3 (2012).CrossRefGoogle Scholar
  5. 5.
    A. V. Vinogradov, A. V. Agafonov, and V. V. Vinogradov, “Low-Temperature Sol-Gel Synthesis Photochromic CuTiO2 Composites,” J. Alloys Compd. 515, 1–3 (2012).CrossRefGoogle Scholar
  6. 6.
    V. V. Vinogradov, A. V. Agafonov, and A. V. Vinogradov, “Superhydrofobic Effect of Hybrid Organo-Inorganic Materials,” J. Sol-Gel Sci. Technol. 53, 312 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Bahners, W. Best, J. Erdmann, Y. Kiray, A. Lunk, T. Stegmaier, and N. Weber, “Plasma Treatment under Atmospheric Pressure for Continuous Hydrophobic and Oleophobic Modification of Textiles,” Unitex. 1, 47–50 (2001).Google Scholar
  8. 8.
    D. Praschak, T. Bahners, and E. Schollmeyer, “Excimer UV Lamp Irradiation Induced Grafting on Synthetic Polymers,” Appl. Phys. A 71, 577–581 (2000).CrossRefGoogle Scholar
  9. 9.
    Z. Liuxue, L. Peng, and S. Zhixing, “Photocatalysis Anatase Thin Film Coated PAN Fibers Prepared at Low Temperature,” Mater. Chem. Phys. 98, 111–115 (2006).CrossRefGoogle Scholar
  10. 10.
    T. Harifi and M. Montazer, “Past, Present, and Future Prospects of Cotton Cross-Linking: New Insight into Nanoparticles,” Carbohydr. Polym. 88, 1125 (2012).CrossRefGoogle Scholar
  11. 11.
    S.-Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, and S. Awatsu, “Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process,” J. Phys. Chem. B 107, 6586–6589 (2003).CrossRefGoogle Scholar
  12. 12.
    X. Xiao, F. Chen, Q. Wei, and N. Wu, “Surface Modification of Polyester Nonwoven Fabrics by Al2O3 Sol-Gel Coating,” J. Coat. Technol. Res. 6, 537–541 (2009).CrossRefGoogle Scholar
  13. 13.
    K. Huang, K. Yang, S. Lin, and W. Lian, “Anti-wrinkle treatment of cotton fabric with a mixed sol of TEOS-TTB/DMDHEU,” J. Appl. Polym. Sci. 106, 2559–2564 (2007).CrossRefGoogle Scholar
  14. 14.
    C. Wang and C. Chen, “Physical Properties of the Crosslinked Cellulose Catalyzed with Nanotitanium Dioxide under UV Irradiation and Electronic Field,” Appl. Catal., A 293, 171 (2005).CrossRefGoogle Scholar
  15. 15.
    R. J. P. Cerveau, F. Corriu, N. Lerouge, D. Bellec, M. Lorcy, M. Nobili, “Self-Organization of a Tetrasubstituted Tetrathiafulvalene (TTF) in a Silica Based Hybrid Organic-Inorganic Material,” Chem. Commun. No. 4, 396 (2004).Google Scholar
  16. 16.
    M. Karimi, M. Mirjalili, M. E. Yazdanshenas, and A. Nazari, “Effect of Nano TiO2 on Self-Cleaning Property of Cross-Linking Cotton Fabric with Succinic Acid under UV Irradiation,” Photochem. Photobiol. 86, 1030 (2010).CrossRefGoogle Scholar
  17. 17.
    D. D. Gagliardi and F. B. Shippee, “Crosslinking of Cellulose with Polycarboxylicacids,” Am. Dyestuff Reptr. 52, 300 (1963).Google Scholar
  18. 18.
    S. P. Rowland, C. M. Welch, M. A. F. Brannan, and D. M. Gallagher, “Introduction of Ester Crosslink into Cotton Cellulose by a Rapid Curing Method,” Text. Res. J. 37, 933 (1967).CrossRefGoogle Scholar
  19. 19.
    S. P. Rowland, C. M. Welch, and M. A. F. Brannan, “Cellulose Fibers Crosslinked and Esterified with Polycarboxylic Acids,” US Patent No. 048 (1970).Google Scholar
  20. 20.
    X. Gu and C. Q. Yang, “FTIR Spectroscopy Study of the Formation of Cyclic Anhydride Intermediates of pPlycarboxylic Acids Catalyzed by Sodium Hypophosphite,” Text. Res. J. 70, 64–70 (2000).CrossRefGoogle Scholar
  21. 21.
    P. Gupta, M. Bajpai, and S. K. Bajpai, “Development of Cotton Fabric with Antibacterial properties: Part I: Preparation of Poly(acrylamide-co-itaconic acid) grafted Cotton Fabric and its Water Uptake Analysis,” J. Macromol. Sci., Part A: Pure Appl. Chem. 45, 179–185 (2008).CrossRefGoogle Scholar
  22. 22.
    C. Q. Yang, “The effect of pH on the Nonformaldehyde Durable Press Finishing,” in Proceedings of the AATCC National Technical Conference (1992), pp. 343–351.Google Scholar
  23. 23.
    C. Q. Yang, “Effect of pH on Nonformaldehyde Durable Press Finishing of Cotton Fabric: FT-IR Spectroscopy Study,” Text. Res. J. 63, 706–711 (1993).CrossRefGoogle Scholar
  24. 24.
    L. Korosi and I. Dekany, “Preparation and Investigation of Structural and Photocatalytic Properties of Phosphate Modified Titanium Dioxide,” Colloids Surf., A 280, 146 (2006).CrossRefGoogle Scholar
  25. 25.
    P. Zhu, S. Sui, B. Wang, K. Sun, and G. Sun, “A Study of Pyrolysis and Pyrolysis Products of Flame Retardant Cotton Fabrics by DSC, TGA and PY-GC-MS,” J. Anal. Appl. Pyrol. 1, 645 (2004).CrossRefGoogle Scholar
  26. 26.
    S. Gaan and G. Sun, “Effect of Phosphorus and Nitrogen on Flame Retardant Cellulose: A Study of Phosphorus Compounds,” J. Anal. Appl. Pyrol. 78, 371 (2007).CrossRefGoogle Scholar
  27. 27.
    F. Lessana, M. Montazera, and M. B. Moghadam, “A Novel Durable Flame-Retardant Cotton Fabric Using Sodium Hypophosphite, nano TiO2 and maleic acid,” Thermochim. Acta 520, 48–54.Google Scholar
  28. 28.
    L. Karimi, M. Mirjalili, M. E. Yazdanshenas, and A. Nazari, “Effect of Nnano TiO2 on Self-Cleaning Property of Cross-Linking Cotton Fabric with Succinic Acid under UV Irradiation,” Photochem. Photobiol. 86, 1030–1037 (2010).CrossRefGoogle Scholar
  29. 29.
    J. Alongi, M. Ciobanu, J. Tata, F. Carosio, and G. Malucelli, “Thermal Stability and Flame Retardancy of Polyester, Cotton, and Relative Blend Textile Fabrics Subjected to Sol-Gel Treatments,” J. Appl. Polym. Sci. 119, 1961–1969 (2011).CrossRefGoogle Scholar
  30. 30.
    R. Dastjerdi, M. Montazer, and S. Shahsavan, “A Novel Technique for Producing Durable Multifunctional Textiles Using Nanocomposite Coating,” Colloids Surf., B 81, 32 (2010).CrossRefGoogle Scholar
  31. 31.
    X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107, 2891–2959 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. L. Galkina
    • 1
  • V. V. Vinogradov
    • 1
  • A. V. Vinogradov
    • 1
  • A. V. Agafonov
    • 1
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations