Skip to main content
Log in

Acute toxic and cytogenetic effects of carbon nanotubes on aquatic organisms and bacteria

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This paper summarizes a comprehensive study concerning the acute toxicity of a commercial carbon nanomaterial consisting mostly of carbon nanotubes to larvae of Chironomidae, crustaceans Ceriodaphnia affinis, algae Scenedesmus quadricauda, and bacteria Escherichia coli. It is shown that the nucleolar organizer region (NOR) index of polytene chromosomes in the salivary gland cells of midge larvae depends on the duration of concentration and exposure. This fact is indicative of the switching on of cell adaptation pathways in response to a xenobiotic stressor to restore cell homeostasis. The investigated nanomaterial is labeled as a Class III environmentally hazardous material (moderately hazardous). Safe concentrations of the carbon nanomaterial in aquatic media are less than 2 mg/L. It is concluded that larvae of Chironomidae are the most resistant to the material of all test species, whereas Scenedesmus quadricauda and Escherichia coli are the most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 56–58 (1991).

    Article  Google Scholar 

  2. S. Kim, “From Carbon Fibers—to Nanotubes,” Chem. J., No. 10, 60–65 (2009).

  3. N. H. Levi-Polyachenko, D. L. Carroll, and J. H. Stewart, “Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology,” in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Ed. by F. Cataldo and T. Da Ros (Springer, Berlin, 2008), pp. 223–266.

    Chapter  Google Scholar 

  4. R. J. Aitken, K. S. Crely, and C. I. Tran, Nanoparticles: an Occupational Hygiene Review. HSE Research Report. http://www.hse.gov.uk/research/rrhtm/rr274.htm

  5. P. Manchikanti and T. K. Bandopadhyay, “Nanomaterials and Effects on Biological Systems: Development of Effective Regulatory Norms,” Nanoethics 4, 77–83 (2010).

    Article  Google Scholar 

  6. J. Hoeck, “What Is Typical for Nanotoxicology and Different from Bulk or the ‘Toxicology’,” Project NMP4-CT-2005-013968 (Eur. Commun., 2009), pp. 39–41.

  7. A. Kahru and H.-Ch. Dubourguier, “From Ecotoxicology to Nanoecotoxicology,” Toxicology 269, 105–119 (2010).

    Article  CAS  Google Scholar 

  8. L. E. Murr and K. M. Garza, “Natural and Anthropogenic Environmental Nanoparticulates: Their Microstructural Characterization and Respiratory Health Implications,” in Proceedings of the Workshop at Centro Stefano Franscini “Nanoparticles in the Environment: Implications and Applications”, Monte Verita, Switzerland, 2008, p. 33.

  9. D. Y. Lyon, A. Thill, J. Rose, and P. J. Alavarez, “Ecotoxicological Impacts of Nanomaterials,” in Environmental Nanotechnology: Applications and Implications of Nanomaterials, Ed. by M. R. Weisner and J.-Y. Bottero (McGraw-Hill, New York, 2007), pp. 445–479.

    Google Scholar 

  10. C. Metcalfee, E. Bennettm, M. Chappell, J. Steevens, M. Depledge, G. Goss, S. Goudey, S. Kaczmar, N. O’Brien, and A. Picado, “Strategic Management and Assessment of Risks and Toxicity of Engineered Nanomaterials (SMARTEN),” in Nanomaterials: Risks and Benefits, Ed. by I. Linkov and J. Steevens (Springer, Dordrecht, 2009), pp. 95–102.

    Chapter  Google Scholar 

  11. X. Zhu, L. Zhu, Y. Chen, and S. Tian, “Acute Toxicities of Six Manufactured Nanomaterial Suspensions to Daphnia Magna,” J. Nanopart. Res. 11, 67–75 (2009).

    Article  CAS  Google Scholar 

  12. G. Schrantz and L. Kantiani, and D. Barcelo, “Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment,” Anal Bioanal Chem. 393, 81–95 (2009).

    Article  Google Scholar 

  13. J. P. Cheng, E. Flahaut, and S. H. Cheng, “Effect of Carbon Nanotubes on Developing Zebrafish (Danio Rerio) Embryos,” Environ. Toxicol. Chem. 26, 708–716 (2007).

    Article  CAS  Google Scholar 

  14. K. O. Kusk and L. Wollenberger, “Fully Defined Saltwater Medium for Cultivation of and Toxicity Testing with Marine Copepod Acartia Tonsa,” Environ. Toxicol. Chem. 18, 1564–1567 (1999).

    Google Scholar 

  15. A. A. Shvedova, V. Castranova, and E. R. Kisin, “Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells,” J. Toxicol. Environ. Health A 66, 1909–1926 (2003).

    Article  CAS  Google Scholar 

  16. A. M. Schrand, J. Johnson, L. Dai, S. M. Hussain, J. J. Schlager, L. Zhu, Y. Hong, and E. Osawa, “Cytotoxicity and Genotoxicity of Carbon Nanomaterials,” in Safety of Nanoparticles, Nanostructure Science and Technology, Ed. by T. J. Webster (Springer, New York, 2009), pp. 159–187.

    Google Scholar 

  17. N. A. Monteiro-Riviere, R. J. Nemanich, and A. O. Inman, “Multi-Walled Carbon Nanotube Interactions with Human Epidermal Keratinocytes,” Toxicol. Lett. 155, 377–384 (2005).

    Article  CAS  Google Scholar 

  18. J. Kolosnjaj, H. Szwarc, and F. Moussa, “Toxicity Studies of Carbon Nanotubes,” in Bio-Applications of Nanoparticles, Ed. by C. W. Warren (Springer, New York, 2007), pp. 181–204.

    Chapter  Google Scholar 

  19. A. M. Schranda, L. Daia, J. J. Schlager, S. M. Hussain, E. Osawa, “Differential Biocompatibility of Carbon Nanotubes and Nanodiamonds,” Diamond Relat. Mater. 16(12), 2118–2123 (2007).

    Article  Google Scholar 

  20. A. K. Patlolla, S. M. Hussain, J. J. Schlager, S. Patlolla, and P. B. Tchounwou, “Comparative Study of the Clastogenicity of Functionalized and Non-Functionalized Multi-Walled Carbon Nanotubes in Bone Marrow Cells of Swiss-Webster Mice,” Environ. Toxicol. 25, 608–621 (2010).

    Article  CAS  Google Scholar 

  21. A. Nel, T. Xia, L. Madler, and N. Li, “Toxic Potential of Materials at the Nano Level,” Science (Washington, DC, U.S.) 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  22. H. K. Lindberg, G. C. Falck, S. Suhonen, M. Vippola, E. Vanhala, J. Catalan, K. Savolainen, and H. Norppa, “Genotoxicity of Nanomaterials: DNA Damage and Micronuclei Induced by Carbon Nanotubes and Graphite Nanofibres in Human Bronchial Epithelial Cells in Vitro,” Toxicol. Lett. 186, 166–173 (2009).

    Article  CAS  Google Scholar 

  23. C. Yang, D. Liu, H. Yang, Z. Zhang, and Z. Xi, “Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: the Role of Particle Size, Shape and Composition,” J. Appl. Toxicol. 29, 69–78 (2009).

    Article  Google Scholar 

  24. D. Pantarotto, J. P. Briand, M. Prato, and A. Bianco, “Translocation of Bioactive Peptides across Cell Membranes by Carbon Nanotubes,” Chem. Commun. (Cambridge, U. K.) 40, 16–17 (2004).

    Article  Google Scholar 

  25. I. F. Zhimulev, Chromomeric Organization of Polytene Chromosomes (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  26. N. A. Petrova and O. K. Klishko, “On the Problem of Individual Variability of Karyotype Chironomus Plumosus: Offtype Puffs at Larva from Natural Population of Chita Oblast’,” Tsitologiya 43, 172–177 (2001).

    Google Scholar 

  27. V. A. Timoshevskii and S. A. Nazarenko, “Interphase Cytogenetics in Estimation of Genomic Mutations in Somatic Cells,” Russ. J. Gen. 41, 1–12 (2005).

    Google Scholar 

  28. W. Beermann, “Differentiation at the Level of the Chromosomes,” in Cell Differentiation and Morphogenesis (North Holland, Amsterdam 1966), pp. 24–54.

    Google Scholar 

  29. T. A. Kolesnikova, I. A. Fedorova, A. A. Gusev, and D. A. Gorin, “Acute Toxicity Analysis of Polyelectrolyte Microcapsules with Zinc Oxide Nanoparticles and Microcapsule Shell Components Using Aquatic Organisms,” Nanotechnol. Russ. 6, 244–255 (2011).

    Article  Google Scholar 

  30. A. G. Tkachev and I. V. Zolotukhin, Equipment and Methods of Synthesis of Solid State Nanostructures: Monograph (Mashinostroenie-1, Moscow, 2007) [in Russian].

    Google Scholar 

  31. Procedure of Determination of Toxicity of Water and Water Extracts from Soils, Precipitates of Wastewaters, Wastes by the Mortality and Change in Fecundity of Ceriodaphnia, FR.1.39.2007.03221 (AKVAROS, Moscow, 2007).

  32. Procedure of Determination of Toxicity of Water, Water Extracts from Soils, Precipitates of Wastewaters and Wastes by the Change in the Level of Fluorescence of Chlorophill and Number of Algae Cells, FR.1.39.2007.03223 (AKVAROS, Moscow, 2007).

  33. Procedure of Determination of Toxicity of Water, Water Extracts from Soils, Precipitates of Wastewaters and Wastes by the Change in the Intensity of Bacterial Bioluminescence according to “Ekolyum” Test System, PND F T 14.1:2:3:4.11-04 16.1:2.3:3.8-04 (Moscow, 2004).

  34. Estimation of Safety of Nanomaterials in Vitro and in Model Systems in Vivo: Methodical Recommendations (Fed. Tsentr Gig. Epidemiol. Rospotrebnadzora, Moscow, 2009).

  35. On Confirmation of Criteria of Relation of Dangerous Wastes to the Class of Danger for Environment, Directive No. 511 (MPR Ross., 2001)

  36. N. B. Il’inskaya and M. S. Iordan, “Procedure of Determination of Stage of Physiological Maturity of Larvae of Chironomids of IV Age on Structure and Size of Blastodisks,” in Proceedings of the 9th Meeting of Workgroup on Project No. 18 “Species and Its Productivity in Areal”, Vilnius, Lithuania, 1975, pp. 17–22.

  37. Methodical Directions. Verification of Observations on Estimation of Level of Toxic Contamination of Bottom Sediments on the Basis of Biotesting. Methods of Toxicological Estimation of Contamination of Fresh-Water Ecosystems, RD 52.24.635-2002 (Rosgidromet, Moscow, 2003).

  38. A. V. Korosov and N. M. Kalinkina, Quantitative Methods of Ecological Toxicology (Petrozavodsk. Gos. Univ., Karel. Nauchn. Tsentr, Petrozavodsk, 2003) [in Russian].

    Google Scholar 

  39. S. Yu. Demin, Extended Abstract of Candidate’s Dissertation in Biology (Leningrad, 1989) [in Russian].

  40. J. C. Stockert, “The Normalized Balbiani Size as a Quatitave Parametår for Transcription Activity in Polytene Chromosomes,” Biol. Zentralbl. 109, 139–146 (1990).

    Google Scholar 

  41. I. A. Fedorova, “Methodical Approaches to Analysis of Toxicological and Cytogenetical Effects of Cholinotropic Preparations on Chironomus Larvae (Diptera) in Vivo in Acute Experiment,” Biomed. Radioelektron., No. 12, 58–65 (2009).

  42. O. V. Zatsepina, “Modern Considerations on Properties and Functions of Nucleolus: Nucleolus as Target of Stress Actions on Cells,” Tsitologiya 49, 748–749 (2007).

    Google Scholar 

  43. FKKO—Federal Classification Catalogue of Wastes. http://www.fkko.ru

  44. S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial Effects of Carbon Nanotubes: Size Does Matter!,” Langmuir 24, 6409–6413 (2008).

    Article  CAS  Google Scholar 

  45. S. Kang, S. M. Mauter, and M. Elimelech, “Microbial Cytotoxicity of Carbon-Based Nanomaterials: Implications for River Water and Wastewater Effluent,” Environ. Sci. Technol. 43, 2648–2653 (2009).

    Article  CAS  Google Scholar 

  46. C. D. Vecitis, K. R. Zodrow, S. Kang, and M. Elimelech, “Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes,” ACS Nano 4, 5471–5479 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gusev.

Additional information

Original Russian Text © A.A. Gusev, I.A. Fedorova, A.G. Tkachev, A.Yu. Godymchuk, D.V. Kuznetsov, I.A. Polyakova, 2012, published in Rossiiskie Nanotekhnologii, 2012, Vol. 7, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, A.A., Fedorova, I.A., Tkachev, A.G. et al. Acute toxic and cytogenetic effects of carbon nanotubes on aquatic organisms and bacteria. Nanotechnol Russia 7, 509–516 (2012). https://doi.org/10.1134/S1995078012050060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078012050060

Keywords

Navigation