Advertisement

Nanotechnologies in Russia

, Volume 7, Issue 9–10, pp 509–516 | Cite as

Acute toxic and cytogenetic effects of carbon nanotubes on aquatic organisms and bacteria

  • A. A. Gusev
  • I. A. Fedorova
  • A. G. Tkachev
  • A. Yu. Godymchuk
  • D. V. Kuznetsov
  • I. A. Polyakova
Article

Abstract

This paper summarizes a comprehensive study concerning the acute toxicity of a commercial carbon nanomaterial consisting mostly of carbon nanotubes to larvae of Chironomidae, crustaceans Ceriodaphnia affinis, algae Scenedesmus quadricauda, and bacteria Escherichia coli. It is shown that the nucleolar organizer region (NOR) index of polytene chromosomes in the salivary gland cells of midge larvae depends on the duration of concentration and exposure. This fact is indicative of the switching on of cell adaptation pathways in response to a xenobiotic stressor to restore cell homeostasis. The investigated nanomaterial is labeled as a Class III environmentally hazardous material (moderately hazardous). Safe concentrations of the carbon nanomaterial in aquatic media are less than 2 mg/L. It is concluded that larvae of Chironomidae are the most resistant to the material of all test species, whereas Scenedesmus quadricauda and Escherichia coli are the most sensitive.

Keywords

Fullerene Water Extract Toxic Action Polytene Chromosome Nucle Olar Organizer Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Lijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 56–58 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Kim, “From Carbon Fibers—to Nanotubes,” Chem. J., No. 10, 60–65 (2009).Google Scholar
  3. 3.
    N. H. Levi-Polyachenko, D. L. Carroll, and J. H. Stewart, “Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology,” in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Ed. by F. Cataldo and T. Da Ros (Springer, Berlin, 2008), pp. 223–266.CrossRefGoogle Scholar
  4. 4.
    R. J. Aitken, K. S. Crely, and C. I. Tran, Nanoparticles: an Occupational Hygiene Review. HSE Research Report. http://www.hse.gov.uk/research/rrhtm/rr274.htm
  5. 5.
    P. Manchikanti and T. K. Bandopadhyay, “Nanomaterials and Effects on Biological Systems: Development of Effective Regulatory Norms,” Nanoethics 4, 77–83 (2010).CrossRefGoogle Scholar
  6. 6.
    J. Hoeck, “What Is Typical for Nanotoxicology and Different from Bulk or the ‘Toxicology’,” Project NMP4-CT-2005-013968 (Eur. Commun., 2009), pp. 39–41.Google Scholar
  7. 7.
    A. Kahru and H.-Ch. Dubourguier, “From Ecotoxicology to Nanoecotoxicology,” Toxicology 269, 105–119 (2010).CrossRefGoogle Scholar
  8. 8.
    L. E. Murr and K. M. Garza, “Natural and Anthropogenic Environmental Nanoparticulates: Their Microstructural Characterization and Respiratory Health Implications,” in Proceedings of the Workshop at Centro Stefano Franscini “Nanoparticles in the Environment: Implications and Applications”, Monte Verita, Switzerland, 2008, p. 33.Google Scholar
  9. 9.
    D. Y. Lyon, A. Thill, J. Rose, and P. J. Alavarez, “Ecotoxicological Impacts of Nanomaterials,” in Environmental Nanotechnology: Applications and Implications of Nanomaterials, Ed. by M. R. Weisner and J.-Y. Bottero (McGraw-Hill, New York, 2007), pp. 445–479.Google Scholar
  10. 10.
    C. Metcalfee, E. Bennettm, M. Chappell, J. Steevens, M. Depledge, G. Goss, S. Goudey, S. Kaczmar, N. O’Brien, and A. Picado, “Strategic Management and Assessment of Risks and Toxicity of Engineered Nanomaterials (SMARTEN),” in Nanomaterials: Risks and Benefits, Ed. by I. Linkov and J. Steevens (Springer, Dordrecht, 2009), pp. 95–102.CrossRefGoogle Scholar
  11. 11.
    X. Zhu, L. Zhu, Y. Chen, and S. Tian, “Acute Toxicities of Six Manufactured Nanomaterial Suspensions to Daphnia Magna,” J. Nanopart. Res. 11, 67–75 (2009).CrossRefGoogle Scholar
  12. 12.
    G. Schrantz and L. Kantiani, and D. Barcelo, “Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment,” Anal Bioanal Chem. 393, 81–95 (2009).CrossRefGoogle Scholar
  13. 13.
    J. P. Cheng, E. Flahaut, and S. H. Cheng, “Effect of Carbon Nanotubes on Developing Zebrafish (Danio Rerio) Embryos,” Environ. Toxicol. Chem. 26, 708–716 (2007).CrossRefGoogle Scholar
  14. 14.
    K. O. Kusk and L. Wollenberger, “Fully Defined Saltwater Medium for Cultivation of and Toxicity Testing with Marine Copepod Acartia Tonsa,” Environ. Toxicol. Chem. 18, 1564–1567 (1999).Google Scholar
  15. 15.
    A. A. Shvedova, V. Castranova, and E. R. Kisin, “Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells,” J. Toxicol. Environ. Health A 66, 1909–1926 (2003).CrossRefGoogle Scholar
  16. 16.
    A. M. Schrand, J. Johnson, L. Dai, S. M. Hussain, J. J. Schlager, L. Zhu, Y. Hong, and E. Osawa, “Cytotoxicity and Genotoxicity of Carbon Nanomaterials,” in Safety of Nanoparticles, Nanostructure Science and Technology, Ed. by T. J. Webster (Springer, New York, 2009), pp. 159–187.Google Scholar
  17. 17.
    N. A. Monteiro-Riviere, R. J. Nemanich, and A. O. Inman, “Multi-Walled Carbon Nanotube Interactions with Human Epidermal Keratinocytes,” Toxicol. Lett. 155, 377–384 (2005).CrossRefGoogle Scholar
  18. 18.
    J. Kolosnjaj, H. Szwarc, and F. Moussa, “Toxicity Studies of Carbon Nanotubes,” in Bio-Applications of Nanoparticles, Ed. by C. W. Warren (Springer, New York, 2007), pp. 181–204.CrossRefGoogle Scholar
  19. 19.
    A. M. Schranda, L. Daia, J. J. Schlager, S. M. Hussain, E. Osawa, “Differential Biocompatibility of Carbon Nanotubes and Nanodiamonds,” Diamond Relat. Mater. 16(12), 2118–2123 (2007).CrossRefGoogle Scholar
  20. 20.
    A. K. Patlolla, S. M. Hussain, J. J. Schlager, S. Patlolla, and P. B. Tchounwou, “Comparative Study of the Clastogenicity of Functionalized and Non-Functionalized Multi-Walled Carbon Nanotubes in Bone Marrow Cells of Swiss-Webster Mice,” Environ. Toxicol. 25, 608–621 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Nel, T. Xia, L. Madler, and N. Li, “Toxic Potential of Materials at the Nano Level,” Science (Washington, DC, U.S.) 311, 622–627 (2006).CrossRefGoogle Scholar
  22. 22.
    H. K. Lindberg, G. C. Falck, S. Suhonen, M. Vippola, E. Vanhala, J. Catalan, K. Savolainen, and H. Norppa, “Genotoxicity of Nanomaterials: DNA Damage and Micronuclei Induced by Carbon Nanotubes and Graphite Nanofibres in Human Bronchial Epithelial Cells in Vitro,” Toxicol. Lett. 186, 166–173 (2009).CrossRefGoogle Scholar
  23. 23.
    C. Yang, D. Liu, H. Yang, Z. Zhang, and Z. Xi, “Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: the Role of Particle Size, Shape and Composition,” J. Appl. Toxicol. 29, 69–78 (2009).CrossRefGoogle Scholar
  24. 24.
    D. Pantarotto, J. P. Briand, M. Prato, and A. Bianco, “Translocation of Bioactive Peptides across Cell Membranes by Carbon Nanotubes,” Chem. Commun. (Cambridge, U. K.) 40, 16–17 (2004).CrossRefGoogle Scholar
  25. 25.
    I. F. Zhimulev, Chromomeric Organization of Polytene Chromosomes (Nauka, Novosibirsk, 1994) [in Russian].Google Scholar
  26. 26.
    N. A. Petrova and O. K. Klishko, “On the Problem of Individual Variability of Karyotype Chironomus Plumosus: Offtype Puffs at Larva from Natural Population of Chita Oblast’,” Tsitologiya 43, 172–177 (2001).Google Scholar
  27. 27.
    V. A. Timoshevskii and S. A. Nazarenko, “Interphase Cytogenetics in Estimation of Genomic Mutations in Somatic Cells,” Russ. J. Gen. 41, 1–12 (2005).Google Scholar
  28. 28.
    W. Beermann, “Differentiation at the Level of the Chromosomes,” in Cell Differentiation and Morphogenesis (North Holland, Amsterdam 1966), pp. 24–54.Google Scholar
  29. 29.
    T. A. Kolesnikova, I. A. Fedorova, A. A. Gusev, and D. A. Gorin, “Acute Toxicity Analysis of Polyelectrolyte Microcapsules with Zinc Oxide Nanoparticles and Microcapsule Shell Components Using Aquatic Organisms,” Nanotechnol. Russ. 6, 244–255 (2011).CrossRefGoogle Scholar
  30. 30.
    A. G. Tkachev and I. V. Zolotukhin, Equipment and Methods of Synthesis of Solid State Nanostructures: Monograph (Mashinostroenie-1, Moscow, 2007) [in Russian].Google Scholar
  31. 31.
    Procedure of Determination of Toxicity of Water and Water Extracts from Soils, Precipitates of Wastewaters, Wastes by the Mortality and Change in Fecundity of Ceriodaphnia, FR.1.39.2007.03221 (AKVAROS, Moscow, 2007).Google Scholar
  32. 32.
    Procedure of Determination of Toxicity of Water, Water Extracts from Soils, Precipitates of Wastewaters and Wastes by the Change in the Level of Fluorescence of Chlorophill and Number of Algae Cells, FR.1.39.2007.03223 (AKVAROS, Moscow, 2007).Google Scholar
  33. 33.
    Procedure of Determination of Toxicity of Water, Water Extracts from Soils, Precipitates of Wastewaters and Wastes by the Change in the Intensity of Bacterial Bioluminescence according to “Ekolyum” Test System, PND F T 14.1:2:3:4.11-04 16.1:2.3:3.8-04 (Moscow, 2004).Google Scholar
  34. 34.
    Estimation of Safety of Nanomaterials in Vitro and in Model Systems in Vivo: Methodical Recommendations (Fed. Tsentr Gig. Epidemiol. Rospotrebnadzora, Moscow, 2009).Google Scholar
  35. 35.
    On Confirmation of Criteria of Relation of Dangerous Wastes to the Class of Danger for Environment, Directive No. 511 (MPR Ross., 2001)Google Scholar
  36. 36.
    N. B. Il’inskaya and M. S. Iordan, “Procedure of Determination of Stage of Physiological Maturity of Larvae of Chironomids of IV Age on Structure and Size of Blastodisks,” in Proceedings of the 9th Meeting of Workgroup on Project No. 18 “Species and Its Productivity in Areal”, Vilnius, Lithuania, 1975, pp. 17–22.Google Scholar
  37. 37.
    Methodical Directions. Verification of Observations on Estimation of Level of Toxic Contamination of Bottom Sediments on the Basis of Biotesting. Methods of Toxicological Estimation of Contamination of Fresh-Water Ecosystems, RD 52.24.635-2002 (Rosgidromet, Moscow, 2003).Google Scholar
  38. 38.
    A. V. Korosov and N. M. Kalinkina, Quantitative Methods of Ecological Toxicology (Petrozavodsk. Gos. Univ., Karel. Nauchn. Tsentr, Petrozavodsk, 2003) [in Russian].Google Scholar
  39. 39.
    S. Yu. Demin, Extended Abstract of Candidate’s Dissertation in Biology (Leningrad, 1989) [in Russian].Google Scholar
  40. 40.
    J. C. Stockert, “The Normalized Balbiani Size as a Quatitave Parametår for Transcription Activity in Polytene Chromosomes,” Biol. Zentralbl. 109, 139–146 (1990).Google Scholar
  41. 41.
    I. A. Fedorova, “Methodical Approaches to Analysis of Toxicological and Cytogenetical Effects of Cholinotropic Preparations on Chironomus Larvae (Diptera) in Vivo in Acute Experiment,” Biomed. Radioelektron., No. 12, 58–65 (2009).Google Scholar
  42. 42.
    O. V. Zatsepina, “Modern Considerations on Properties and Functions of Nucleolus: Nucleolus as Target of Stress Actions on Cells,” Tsitologiya 49, 748–749 (2007).Google Scholar
  43. 43.
    FKKO—Federal Classification Catalogue of Wastes. http://www.fkko.ru
  44. 44.
    S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial Effects of Carbon Nanotubes: Size Does Matter!,” Langmuir 24, 6409–6413 (2008).CrossRefGoogle Scholar
  45. 45.
    S. Kang, S. M. Mauter, and M. Elimelech, “Microbial Cytotoxicity of Carbon-Based Nanomaterials: Implications for River Water and Wastewater Effluent,” Environ. Sci. Technol. 43, 2648–2653 (2009).CrossRefGoogle Scholar
  46. 46.
    C. D. Vecitis, K. R. Zodrow, S. Kang, and M. Elimelech, “Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes,” ACS Nano 4, 5471–5479 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Gusev
    • 1
  • I. A. Fedorova
    • 2
  • A. G. Tkachev
    • 3
  • A. Yu. Godymchuk
    • 4
  • D. V. Kuznetsov
    • 5
  • I. A. Polyakova
    • 1
  1. 1.Medical InstituteDerzhavin State UniversityTambovRussia
  2. 2.National Research Center Chernyshevskii State UniversitySaratovRussia
  3. 3.NanoTekhTsentrTambovRussia
  4. 4.Tomsk Polytechnic UniversityTomskRussia
  5. 5.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations