Nanotechnologies in Russia

, Volume 7, Issue 7–8, pp 421–427 | Cite as

Laser-induced effects in raman spectra of nanocrystalline silicon

  • A. O. Rybaltovskii
  • V. N. Bagratashvili
  • A. A. Ishchenko
  • N. V. Minaev
  • N. N. Kononov
  • S. G. Dorofeev
  • A. A. Krutikova
  • A. A. Ol’khov
Article

Abstract

Investigations into the action of continuous laser radiation with a wavelength of 532 nm on particles of nanocrystalline silicon (nc-Si) obtained by the method of laser pyrolysis of monosilane have been carried out for the first time using Raman (combination scattering (RS)) spectroscopy. It is established that the action of rather powerful radiation (105–106 W/cm2) causes substantial changes in the state of nc-Si which are associated with the development of thermooxidative processes in air, leading to a complex character of the change in the RS band belonging to nc-Si. The process of the matrix introduction of nc-Si particles into microparticles of low-density polyethylene is achieved with the use of SCF impregnation into a SC-CO2 medium. It is established that the action of laser radiation on nc-Si particles in a polymer matrix starts manifesting as a change in the RS band at power densities much greater than those in the case of a pure nc-Si powder.

Keywords

Power Density High Power Density Oxide Shell Monosilane NANOCRYSTALLINE Silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ishchenko, G. V. Fetisov, and A. A. Aslanov, Nanosilicon: Properties, Preparation, Application, Methods of Study and Control (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    A. O. Rybaltovskii, V. N. Bagratashvili, A. I. Belogorokhov, V. V. Koltashev, V. G. Plotnichenko, A. P. Popov, A. V. Priezzhev, A. A. Ishchenko, A. A. Sviridova, K. V. Zaitseva, and I. A. Tutorskii, Opt. Spektrosk. 101, 624 (2006).CrossRefGoogle Scholar
  3. 3.
    A. A. Ishchenko and A. A. Sviridova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 49, 3 (2006).Google Scholar
  4. 4.
    K. V. Zaitseva, A. A. Ishchenko, N. N. Kononov, A. O. Rybaltovskii, and P. A. Storozhenko, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 52, 126 (2009).Google Scholar
  5. 5.
    N. N. Kononov, G. P. Kuz’min, A. N. Orlov, A. A. Surkov, and O. V. Tikhonevich, Fiz. Tekh. Poluprovodn. (S.-Peterb.) 39, 868 (2005).Google Scholar
  6. 6.
    S. G. Dorofeev, N. N. Kononov, A. A. Ishchenko, R. B. Vasil’ev, M. A. Gol’dshtrakh, K. V. Zaitseva, V. V. Koltashev, V. G. Plotnichenko, O. V. Tikhonevich, Fiz. Tekh. Poluprovodn. (S.-Peterb.) 43, 1460 (2009).Google Scholar
  7. 7.
    V. A. Radtsig, A. O. Rybaltovskii, A. A. Ishchenko, A. A. Sviridova, K. V. Zaitseva, V. V. Koltashev, N. N. Kononov, and V. G. Plotnichenko, Nanotekhnika, No. 3, 110 (2007).Google Scholar
  8. 8.
    V. N. Bagratashvili, S. G. Dorofeev, A. A. Ishchenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, Sverkhkrit. Flyuidy: Teor. Prakt. 5, 799 (2010).Google Scholar
  9. 9.
    V. N. Bagratashvili, M. S. Vakshtein, Yu. S. Zavorotnyi, L. I. Krotova, A. O. Manyashin, V. K. Popov, A. O. Rybaltovskii, I. I. Taraskina, and P. S. Timashev, Perspekt. Mater., No. 2, 39 (2010).Google Scholar
  10. 10.
    V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Y. S. Zavorotnii, and S. M. Howdle, Green Chem. 13, 2696 (2011).CrossRefGoogle Scholar
  11. 11.
    V. N. Bagratashvili, Yu. G. Vainer, V. S. Doljikov, V. S. Letokhov, A. A. Makarov, E. G. Silkis, and V. D. Titov, Appl. Phys. 22, 101 (1980).CrossRefGoogle Scholar
  12. 12.
    V. M. Marchenko, V. V. Koltashev, S. V. Lavrishchev, D. I. Murin, and V. G. Plotnichenko, Laser Phys. 10, 576 (2000).Google Scholar
  13. 13.
    C. Meier, S. Luttjohann, V. G. Kravets, H. Nienhauus, A. Lorke, and H. Wiggers, Physica E 32, 155 (2006).CrossRefGoogle Scholar
  14. 14.
    H. Tang and I. P. Herman, Phys. Rev. B: Condens. Matter Mater. Phys. 43, 2299 (1991).CrossRefGoogle Scholar
  15. 15.
    V. I. Sokolov and N. A. Fedorovic, Phys. Stat. Sol. A 99, 151 (1987).CrossRefGoogle Scholar
  16. 16.
    G. F. Cerofolini and L. Meda, J. Non-Cryst. Solids 216, 140 (1997).CrossRefGoogle Scholar
  17. 17.
    J.-H. Jia, Y. Wang, Z.-X. Chen, and L.-D. Zhang, Appl. Phys. A 65, 383 (1997).CrossRefGoogle Scholar
  18. 18.
    F. R. Bichovsky and F. D. Rossini, Thermochemistry of the Chemical Substances (Norwich, New York, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. O. Rybaltovskii
    • 1
  • V. N. Bagratashvili
    • 2
  • A. A. Ishchenko
    • 3
  • N. V. Minaev
    • 2
  • N. N. Kononov
    • 4
  • S. G. Dorofeev
    • 5
  • A. A. Krutikova
    • 3
  • A. A. Ol’khov
    • 3
  1. 1.Skobel’tsin Scientific Research Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Federal State Budget Institution of Science, Institute of Problems of Laser and Information TechnologiesRussian Academy of SciencesTroitsk, Moscow oblastRussia
  3. 3.Lomonosov Moscow University of Fine Chemical TechnologiesMoscowRussia
  4. 4.Federal State Budget Institution of Science, Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  5. 5.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations