Nanotechnologies in Russia

, Volume 7, Issue 3–4, pp 140–148 | Cite as

Energy spectrum of electrons in multilayer graphenes doped with atoms of alkaline metals



The electron-energy spectrum of k-layer graphenes (k = 1–4)-both pure and with alkaline metals (M: Na, K, Rb, Cs) incorporated in the interlayer space-has been investigated. The concentration of “guest atoms” x varied. A computation procedure based on the density functional theory generalized to the case of periodic structures (cyclic boundary conditions are imposed on a symmetrically-expanded elementary cell (EC)) is used. The dependences of the chemical potential level, the energy gain caused by the incorporation of M atoms, and the barriers of M transfers between the nearest stable states in the interlayer space of a multilayer graphene on k and x are discussed.


Alkaline Metal Brillouin Zone Graphene Layer Interlayer Space Single Layer Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ohta, A. Bostwick, J. L. McChesney, Th. Seyller, K. Horn, and E. Rotenberg, “Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett. 98, 206802–206806 (2007).CrossRefGoogle Scholar
  2. 2.
    M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, “Trilayer Graphene is a Semimetal with a Gate-Tunable Band Overlap,” Nature Nanotechnol. 4, 383–388 (2009).CrossRefGoogle Scholar
  3. 3.
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two Dimensional Atomic Crystals,” Proc. Natl. Acad. Sci. USA 102, 10 451–10 453 (2005).CrossRefGoogle Scholar
  4. 4.
    A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nature Mater. 6, 183–191 (2007).CrossRefGoogle Scholar
  5. 5.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666–668 (2004).CrossRefGoogle Scholar
  6. 6.
    C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics,” J. Phys. Chem. B 108, 19912–19916 (2004).CrossRefGoogle Scholar
  7. 7.
    M. S. Dresselhaus and G. Dresselhau, “Intercalation Compounds of Graphite,” Adv. Phys. 51, 1–186 (2002).CrossRefGoogle Scholar
  8. 8.
    Yu. A. Dyadin, “Graphite and Its Inclusion Compounds,” Soros. Obrazovat. Zh. 6(10), 43–49 (2000).Google Scholar
  9. 9.
    W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001).CrossRefGoogle Scholar
  10. 10.
    W. Kohn, “Electronic Structure of Matter: Wave Functions and Density Functionals,” Usp. Fiz. Nauk 172, 336–348 (2002).CrossRefGoogle Scholar
  11. 11.
    P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136, 864–871 (1964).CrossRefGoogle Scholar
  12. 12.
    W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. Lett. 140, 1133–1138 (1965).Google Scholar
  13. 13.
    D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic Method,” Phys. Rev. Lett. 45, 566–569 (1980).CrossRefGoogle Scholar
  14. 14.
    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, “The SIESTa Method for ab initio Order-N Materials Simulation,” J. Phys.: Condens. Matter 14, 2745–2779 (2002).CrossRefGoogle Scholar
  15. 15.
    E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal, and J. M. Soler, “The SIESTa Method; Developments and Applicability,” J. Phys.: Condens. Matter 20, 1–6 (2008).CrossRefGoogle Scholar
  16. 16.
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRefGoogle Scholar
  17. 17.
    R. A. Evarestov, Quantum Chemistry of Solids. The LCAO First Principles of Crystals (Springer-Verlag, Berlin, Heidelberg, 2007).Google Scholar
  18. 18.
    N. Troullier and J. L. Martins, “Efficient Pseudopotentials for Plane-Wave Calculations,” Phys. Rev. B 43, 1993–2006 (1991).CrossRefGoogle Scholar
  19. 19.
    L. Kleinman and D. M. Bylander, “Efficacious Form for Model Pseudopotentials,” Phys. Rev. Lett. 48, 1425–1428 (1982).CrossRefGoogle Scholar
  20. 20.
    H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B 13, 5188–5192 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations