Nanotechnologies in Russia

, Volume 6, Issue 11–12, pp 717–722 | Cite as

Activation of oxygen on palladium nanocluster

  • A. V. Beletskaya
  • D. A. Pichugina
  • N. E. Kuz’menko


A simulation of oxygen adsorption on a palladium nanocluster has been performed using density functional theory. It has been demonstrated that the formation of Pd8O2 complexes occurs according to the dissociation mechanism. The most probable centers of oxygen activation are atoms of metal with excess Pdδ− electron density. The possibility of identifying the oxygen coordination type on a Pd8 cluster using the IR spectra is discussed.


Palladium Atom Density Functional Study Dissocia Tion Palladium Cluster Palladium Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Králik, B. Corain, and M. Zecca, “Catalysis by Metal Nanoparticles Supported on Functionalized Polymers,” Chem. Pap. 54(6b), 254–264 (2000).Google Scholar
  2. 2.
    V. I. Bukhtiyarov, B. L. Moroz, N. E. Bekk, and I. P. Prosvirin, “Size Effects in Catalysis by Supported Metal Nanoparticles,” Catal. Ind. 1(1), 17–28 (2009).CrossRefGoogle Scholar
  3. 3.
    P. M. Valetskii, M. G. Sul’man, L. M. Bronshtein, E. M. Sulman, A. I. Sidorov, and V. G. Matveeva, “Nanosized Catalysts in Fine Organic Synthesis as a Basis for Developing Innovative Technologies in the Pharmaceutical Industry,” Nanotechnol. Russ. 4(9–10), 647–664 (2009).CrossRefGoogle Scholar
  4. 4.
    T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, “Intercluster Interactions in Catalysis by Metal Nanoparticles,” Ross. Nanotekhnol. 2(1–2), 47–60 (2007).Google Scholar
  5. 5.
    R. Meyer, S. K. Shaikhutdinov, and H.-J. Freund, “CO Oxidation on a Pd/Fe3O4 (111) Model Catalyst,” Z. Phys. Chem. (Muenchen) 218, 905–914 (2004).CrossRefGoogle Scholar
  6. 6.
    K. Zorn, S. Giorgio, E. Halwax, C. R. Henry, H. Grönbeck, and G. Rupprechter, “CO Oxidation on Technological Pd-Al2O3 Catalysts: Oxidation State and Activity,” J. Phys. Chem. C 115(4), 1103–1111 (2011).CrossRefGoogle Scholar
  7. 7.
    K. Muto, N. Katada, and M. Niwa, “Complete Oxidation of Methane on Supported Palladium Catalyst: Support Effect,” Appl. Catal., A 134(2), 203–215 (1996).CrossRefGoogle Scholar
  8. 8.
    Y. Fan, Z. An, X. Pan, X. Liu, and X. Bao, “Quinone Tailored Selective Oxidation of Methane over Palladium Catalyst with Molecular Oxygen as an Oxidant,” Chem. Commun. (Cambridge), No. 48, 7488–7490 (2009).Google Scholar
  9. 9.
    C. Y. Ma, B. J. Dou, J. J. Li, J. Cheng, Q. Hu, Z. P. Hao, S. Z. Qiao, “Catalytic Oxidation of Benzyl Alcohol on Au or Au-Pd Nanoparticles Confined in Mesoporous Silica,” Appl. Catal., B 92(1–2), 202–208 (2009).Google Scholar
  10. 10.
    S. Park, J. C. Jung, J. G. Seo, T. J. Kim, Y.-M. Chung, S.-H. Oh, and I. K. Song, “Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalysts Supported on SO3H-Functionalized SiO2 and TiO2,” Catal. Lett. 130(3–4), 604–607 (2009).CrossRefGoogle Scholar
  11. 11.
    P. Landon, P. J. Collier, A. F. Carley, D. Chadwick, A. J. Papworth, A. Burrows, C. J. Kiely, and G. J. Hutchings, “Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Pd and Au Catalysts,” Phys. Chem. Chem. Phys. 5, 1917–1923 (2003).CrossRefGoogle Scholar
  12. 12.
    E. J. Becman and C. Qunlai, “Direct Synthesis of H2O2 from O2 and H2 over Precious Metal Loaded TS-1 in CO2,” Green Chem. 9, 802–808 (2007).CrossRefGoogle Scholar
  13. 13.
    G. C. Bond, C. Louis, and D. T. Thompson, Catalysis by Gold (Imperial College Press, London, 2007), Vol. 6.Google Scholar
  14. 14.
    A. Staykov, T. Kamachi, T. Ishihara, and K. Yoshizawa, “Theoretical Study of the Direct Synthesis of H2O2 on Pd on Pd/Au Surfaces,” J. Phys. Chem. C 112(49), 19501–19505 (2008).CrossRefGoogle Scholar
  15. 15.
    J. Demuth, “Adsorption of Oxygen on a Pd(111) Surface Studied by High Resolution Electron Energy Loss Spectroscopy,” Surf. Sci. 173(2–3), 395–410 (1986).Google Scholar
  16. 16.
    K. Honkala and K. Laasonen, “Ab Initio Study of O2 Precursor States on the Pd(111) Surface,” J. Chem. Phys. 115(5), 2297–2302 (2001).CrossRefGoogle Scholar
  17. 17.
    T. Futschek, M. Marsman, and J. Hafner, “Structural and Magnetic Isomers of Small Pd and Rh Clusters: An Ab Initio Density Functional Study,” J. Phys.: Condens. Matter 17(38), 5927–5963 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Moseler, H. Häkkinen, R. N. Barnett, and U. Landman, “Structure and Magnetism of Neutral and Anionic Palladium Clusters,” Phys. Rev. Lett. 86(12), 2545–2548 (2001).CrossRefGoogle Scholar
  19. 19.
    G. Zanti and D. Peeters, “DFT Study of Small Palladium Clusters Pdn and Their Interaction with a CO Ligand (n = 1–9),” Eur. J. Inorg. Chem. 2009(26), 3904–3911 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Ni and Z. Zeng, “Density Functional Study of Hydrogen Adsorption and Dissociation on Small Pdn (n = 1–7) Clusters,” THEOCHEM 910, 14–19 (2009).CrossRefGoogle Scholar
  21. 21.
    B. Kalita and R. Deka, “Density Functional Studies on Structure and Reactivity of Pdn Clusters for n = 1–13,” Bull. Catal. Soc. India 5(3), 110–120 (2006).Google Scholar
  22. 22.
    H. Zhang, D. Tian, and J. Zhao, “Structural Evolution of Medium-Sized Pdn (n = 15–25) from Density Functional Theory,” J. Chem. Phys. 129(11), 114302–114310 (2008).CrossRefGoogle Scholar
  23. 23.
    B. Huber, H. Häkkinen, U. Landman, and M. Moseler, “Oxidation of Small Gas Phase Clusters: A Density Functional Study,” Comput. Mater. Sci. 35(3), 371–374 (2006).CrossRefGoogle Scholar
  24. 24.
    B. Kalita and R. Deka, “Reaction Intermediates of CO Oxidation on Gas Phase Pd4 Clusters: A Density Functional Study,” J. Am. Chem. Soc. 131(37), 13252–13254 (2009).CrossRefGoogle Scholar
  25. 25.
    J. Roques, C. Lacaze-Dufaure, and C. Mijoule, “Dissociative Adsorption of Hydrogen and Oxygen on Palladium Clusters: A Comparison with the (111) Infinite Surface,” J. Chem. Theory Comput. 3(3), 878–884 (2007).CrossRefGoogle Scholar
  26. 26.
    U. Heiz, A. Sanchez, S. Abbet, and W.-D. Schneider, “Tuning the Oxidation of Carbon Monoxide Using Nanoassembled Model Catalysts,” Chem. Phys. 262(1), 189–200 (2000).CrossRefGoogle Scholar
  27. 27.
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRefGoogle Scholar
  28. 28.
    C. Xiao, S. Krüger, T. Belling, M. Mayer, and N. Rösch, “Relativistic Effects on Geometry and Electronic Structure of Small Pdn Species (n = 1, 2, 4),” Int. J. Quantum Chem. 74(4), 405–416 (1999).CrossRefGoogle Scholar
  29. 29.
    W. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis Sets for the Third-, Fourth-, and Fifth-Row Atoms” Can. J. Chem. 70(2), 612–630 (1992).CrossRefGoogle Scholar
  30. 30.
    Z. J. Wu, S. H. Zhou, J. S. Shi, and S. Y. Zhang, “Geometries and Electronic Properties of AunPdm (n = 1-4, m = -1, 0, 1) Clusters,” Chem. Phys. Lett. 368, 153–161 (2003).CrossRefGoogle Scholar
  31. 31.
    S.-Sh. Lin, B. Strauss, and A. Kant, “Dissociation Energy of Pd2,” J. Chem. Phys. 51, 2282–2283 (1969).CrossRefGoogle Scholar
  32. 32.
    K. Balasubramanian, “Spectroscopic Properties of 41 Electronic States of Pd2,” J. Chem. Phys. 89, 6310–6315 (1988).CrossRefGoogle Scholar
  33. 33.
    I. V. Kochikov, G. M. Kuramshina, Yu. A. Pentin, and A. G. Yagola, Inverse Problems of Vibrational Spectroscopy (Moscow State University, Moscow, 1993; VSP, Zeist, The Netherlands, 1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. V. Beletskaya
    • 1
  • D. A. Pichugina
    • 1
  • N. E. Kuz’menko
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations