Neutron studies of carbon nanostructures

  • V. L. Aksenov


The possibilities of neutron scattering methods in the research of carbon nanomaterials are outlined. Some examples of determinations of the structure of crystalline solids, the characterization of films, layered structures, and dispersed systems are given. Quasi-1D fullerene structures, single-wall carbon nanotubes (their chirality and hydrogen storage capacity), liquid dispersions of nanodiamonds and shungites, fullerene solutions, and the structure of water in pores and at interfaces are considered. The results of the application of nanodiamond powders in fundamental neutron physics, as well as the possibilities of carrying out neutron investigations in Russia, are discussed.


Fullerene Neutron Source Small Angle Neutron Scattering Fullerene Solution Fractal Dimensionality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. L. Aksenov and A. M. Balagurov, Phys.—Usp. 39(9), 897 (1996).CrossRefGoogle Scholar
  2. 2.
    V. L. Aksenov, Priroda (Moscow), No. 9, 50 (2008).Google Scholar
  3. 3.
    J. R. D. Copley, D. A. Neumann, R. L. Cappelletti, and W. A. Kamitakahara, J. Phys. Chem. Solids 53(11), 1353 (1992).CrossRefGoogle Scholar
  4. 4.
    V. L. Aksenov, V. S. Shakhmatov, and Yu. A. Osip’yan, JETP 86(3), 591 (1998).CrossRefGoogle Scholar
  5. 5.
    B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature (London) 396, 323 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Rols, J. Cambedouzou, M. Chorro, H. Schober, V. Agafonov, P. Launois, V. Davydov, A. V. Rakhmanina, H. Kataura, and J.-L. Sauvajol, Phys. Rev. Lett. 101, 065507 (2008).CrossRefGoogle Scholar
  7. 7.
    I. P. Suzdalev, Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (Komkniga, Moscow, 2005) [in Russian].Google Scholar
  8. 8.
    P. Ojeda-May, M. Terrones, H. Terrones, D. Hoffman, T. Proffen, and A. K. Cheetham, Diamond Relat. Mater. 16, 473 (2007).CrossRefGoogle Scholar
  9. 9.
    P. A. Georgiev, D. K. Ross, A. De Monte, U. Montaretto-Marullo, R. A. H. Edwards, A. J. Ramirez-Cuestra, M. A. Adams, and D. Colognesi, Carbon 43, 895 (2005).CrossRefGoogle Scholar
  10. 10.
    A. I. Kolesnikov, I. O. Bashkin, V. E. Antonov, D. Colognesi, J. Mayers, and A. P. Moravsky, J. Alloys Compd. 446–447, 389 (2007).CrossRefGoogle Scholar
  11. 11.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).CrossRefGoogle Scholar
  12. 12.
    J. A. Johnson, J. B. Woodford, A. Erdemir, and G. R. Fenske, Appl. Phys. Lett. 83(3), 452 (2003).CrossRefGoogle Scholar
  13. 13.
    U-Ser Jeng, Chia-Hung Hsu, Tsang-Lang Lin, Ching-Mao Wu, Hsin-Lung Chen, Lin-Ai Tai, and Kuo-Chu Hwang, Physica B (Amsterdam) 357, 193 (2005).Google Scholar
  14. 14.
    M. A. Kiselev, P. Lesieur, A. M. Kiselev, D. Lombardo, and V. L. Aksenov, Appl. Phys. A: Mater. Sci. Process. 75, 1 (2002).CrossRefGoogle Scholar
  15. 15.
    N. Cohaut, J. M. Guet, O. Manfroi, A. Albiniak, and G. Furdin, in Studies in Surface Science and Catalysis, Vol. 160: Characterization of Porous Solids: VII, Ed. by P. L. Llewellyn, F. Rodrguez-Reinoso, J. Rouqerol, and N. Seaton (Elsevier, Amsterdam, 2007), p. 407.Google Scholar
  16. 16.
    N. Cohaut, A. Thery, J. M. Guet, J. N. Rouzaud, and L. Kocon, Carbon 45, 1185 (2007).CrossRefGoogle Scholar
  17. 17.
    P. R. Buseck, L. P. Galdobina, V. V. Kovalevski, N. N. Rozhkova, J. W. Valley, and A. Z. Zaidenberg, Can. Mineral. 35(6), 1363 (1997).Google Scholar
  18. 18.
    M. V. Avdeev, T. V. Tropin, V. L. Aksenov, L. Rosta, V. M. Garamus, and N. N. Rozhkova, Carbon 44, 954 (2006).CrossRefGoogle Scholar
  19. 19.
    V. V. Danilenko, Phys. Solid State 46(4), 595 (2004).CrossRefGoogle Scholar
  20. 20.
    M. V. Baidakova, A. Ya. Vul’, V. I. Siklitskii, and N. N. Faleev, Phys. Solid State 40(4), 715 (1998).CrossRefGoogle Scholar
  21. 21.
    A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Ya. Vul’, and E. Osawa, Carbon 43, 1722 (2005).CrossRefGoogle Scholar
  22. 22.
    M. V. Avdeev, N. N. Rozhkova, V. L. Aksenov, V. M. Garamus, R. Willumeit, and E. Osawa, J. Phys. Chem. 113, 9473 (2009).Google Scholar
  23. 23.
    M. Ozawa, M. Ihakuma, M. Takahashi, F. Kataoka, A. Krüger, and E. Osawa, Adv. Mater. (Weinheim) 19, 1201 (2007).CrossRefGoogle Scholar
  24. 24.
    V. M. Garamus and J. S. Pedersen, Colloids Surf., A 132, 203 (1998).CrossRefGoogle Scholar
  25. 25.
    Water: Structure, State, and Solvation. Recent Achievements, Ed. by A. M. Kutepov (Nauka, Moscow, 2003) [in Russian].Google Scholar
  26. 26.
    M. V. Korobov, N. V. Avramenko, A. G. Bogachev, N. N. Rozhkova, and E. Osawa, J. Phys. Chem. C 111, 7330 (2007).CrossRefGoogle Scholar
  27. 27.
    S. Iijima, Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
  28. 28.
    A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93(3), 035503-1 (2004).CrossRefGoogle Scholar
  29. 29.
    G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky, and L. A. Vashchenko, J. Chem. Soc., Chem. Commun. 12, 1281 (1995).CrossRefGoogle Scholar
  30. 30.
    G. V. Andrievsky, V. K. Klochkov, A. Bordyuh, and G. I. Dovbeshko, Chem. Phys. Lett. 364, 8 (2002).CrossRefGoogle Scholar
  31. 31.
    M. V. Avdeev, A. A. Khokhryakov, T. V. Tropin, G. V. Andrievsky, V. K. Klochkov, L. I. Derevyanchenko, L. Rosta, V. M. Garamus, V. B. Priezzhev, M. V. Korobov, and V. L. Aksenov, Langmuir 20, 4363 (2004).CrossRefGoogle Scholar
  32. 32.
    M. V. Avdeev, V. L. Aksenov, and T. V. Tropin, Russ. J. Phys. Chem. A 84(8), 1273 (2010).CrossRefGoogle Scholar
  33. 33.
    Nucleation Theory and Applications, Ed. by J. W. P. Schmelzer, G. Röpke, and V. B. Priezzhev (Joint Institute for Nuclear Research, Dubna, Russia, 1999).Google Scholar
  34. 34.
    V. L. Aksenov, T. V. Tropin, M. V. Avdeev, V. B. Priezzhev, and J. W. P. Schmelzer, Fiz. Elem. Chastits At. Yadra 36, 108 (2005).Google Scholar
  35. 35.
    V. L. Aksenov, T. V. Tropin, O. A. Kyzyma, M. V. Avdeev, M. V. Korobov, and L. Rosta, Phys. Solid State 52(5), 1059 (2010).CrossRefGoogle Scholar
  36. 36.
    T. V. Tropin, M. V. Avdeev, V. B. Priezzhev, and V. L. Aksenov, JETP Lett. 83(9), 399 (2006).CrossRefGoogle Scholar
  37. 37.
    Yu. A. Mostovoi, K. N. Mukhin, and O. O. Patarakin, Phys.—Usp. 39(9), 925 (1996).CrossRefGoogle Scholar
  38. 38.
    V. V. Nesvizhevsky, Phys. At. Nucl. 65(3), 400 (2002).CrossRefGoogle Scholar
  39. 39.
    V. Nesvizhevsky, R. Cubitt, E. Lychagin, A. Muzychka, G. Nekhaev, G. Pignol, K. Protasov, and A. Strelkov, Materials 3, 1768 (2010).CrossRefGoogle Scholar
  40. 40.
    R. Cubitt, E. V. Lychagin, A. Yu. Muzychka, G. V. Nekhaev, V. V. Nesvizhevsky, G. Pignol, K. V. Protasov, and A. V. Strelkov, Nucl. Instrum. Methods Phys. Res., Sect. A 622(1), 182 (2010).CrossRefGoogle Scholar
  41. 41.
    V. L. Aksenov, Crystallogr. Rep. 52(3), 374 (2007).CrossRefGoogle Scholar
  42. 42.
    V. L. Aksenov, Nauka Ross., No. 1 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. L. Aksenov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations