Nanotechnologies in Russia

, Volume 6, Issue 5–6, pp 370–378 | Cite as

Mechanical properties of mass-produced nanostructured titanium

  • M. B. Ivanov
  • Yu. R. Kolobov
  • E. V. Golosov
  • I. N. Kuz’menko
  • V. P. Veinov
  • D. A. Nechaenko
  • E. S. Kungurtsev
Article

Abstract

The structure and mechanical properties of nanostructured titanium VT1-0 derived using an ingenious method which combines helical and longitudinal rolling are studied in comparison with the properties of commercial titanium alloys VT6 and VT16, as well as VT1-0 in a coarse-grained state. The mechanical properties of these materials are studied using quasi-static tensile and torsion tests (including finished products, i.e., implants for osteosynthesis), as well as fatigue tests. It is shown that the use of the developed method of severe plastic deformation is an efficient mode for the formation of a high-strength nanostructured state in titanium VT1-0, which exhibits sensitivity to stress concentrators under cyclic loading that is characteristic of titanium alloys and an extremely high reserve of torsional plasticity.

Keywords

Titanium Alloy Fatigue Strength Severe Plastic Deformation Stress Concentrator Torsion Test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Yoshimitsu, R. Sethumadhvan, I. Yoshimasa, and T. Tetsuya, “Corrosion Resistance, Mechanical Properties, Corrosion Fatigue Strength, and Cytocompatibility of New Ti Alloys without Al and V,” Biomaterials, No. 19, 1197–1215 (1998).Google Scholar
  2. 2.
    E. F. Dudarev, O. A. Kashin, Yu. R. Kolobov, G. P. Pochivalova, K. V. Ivanov, and R. Z. Valiev, “Microplastic Deformation of Polycrystalline and Submicrocrystalline Titanium during Static and Cyclic Loading,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 20–25 (1998) [Russ. Phys. J. 41 (12), 1188–1192 (1998)].Google Scholar
  3. 3.
    Yu. R. Kolobov, O. A. Kashin, E. E. Sagymbaev, E.F. Dudarev, L. S. Bushnev, G. P. Grabovetskaya, G. P. Pochivalova, N. V. Girsova and V. V. Stolarov, “Structure and Mechanical and Electrochemical Properties of Ultrafine-Grained Titanium,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 77–85 (2000) [Russ. Phys. J. 43 (1), 71–78 (2000)].Google Scholar
  4. 4.
    Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, E. F. Dudarev, K. V. Ivanov, M. B. Ivanov, O. A. Kashin, and E. V. Naidenkin, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001; Cambridge International Science Publishing, Cambridge, 2007).Google Scholar
  5. 5.
    Yu. R. Kolobov, “Nanotechnologies for the Formation the Structure and Properties of Medical Implants Based on Titanium Alloys with Bioactive Coatings,” Ross. Nanotekhnol. 4(11–12), 19–31 (2009) [Nanotechnol. Russ. 4 (11–12), 758–775 (2009)].Google Scholar
  6. 6.
    R. Z. Valiev, I. P. Semenova, V. V. Latysh, A. V. Shcherbakov, and E. B. Yakushina, “Nanostructured Titanium for Biomedical Applications: New Developments and Challenges for Commercialization,” Ross. Nanotekhnol. 3(9–10), 80–89 (2008) [Nanotechnol. Russ. 3 (9–10), 593–601 (2008)].Google Scholar
  7. 7.
    R. Z. Valiev, “Preparation of Nanostructured Metals and Alloys with Unique Properties Using Severe Plastic Deformations,” Ross. Nanotekhnol. 1(2), 208–216 (2006).Google Scholar
  8. 8.
    R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Production, Structure, and Properties (Akademkniga, Moscow, 2007) [in Russian].Google Scholar
  9. 9.
    Ya. E. Beigel’zimer, V. N. Varyukhin, C. G. Synkov, A. N. Sapronov, and V. G. Synkov, “New Schemes for Accumulating Severe Plastic Deformations with the Use of Hydroextrusion,” Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 9(3), 109 (1999).Google Scholar
  10. 10.
    V. M. Segal, “Equal-Channel Angular Extrusion: From Macromechanics to Structure Formation,” Mater. Sci. Eng., A 271, 322–333 (1999).CrossRefGoogle Scholar
  11. 11.
    V. N. Varyukhin, V. Z. Spuskanyuk, N. I. Matrosov, A. B. Dugadko, B. A. Shevchenko, E. A. Medvedskaya, L. F. Sennikova, A. V. Spuskanyuk, and E. A. Pavlovskaya, “Equal-Channel Multiangular Extrusion,” Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 11(1), 31–39 (2001).Google Scholar
  12. 12.
    K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langdon, “Development of a Multi-Pass Facility for Equal-Channel Angular Pressing to High Total Strains,” Mater. Sci. Eng., A 281, 82–87 (2000).CrossRefGoogle Scholar
  13. 13.
    M. B. Ivanov, A. V. Penkin, Yu. R. Kolobov, E. V. Golosov, D. A. Nechaenko, and S. A. Bozhko, “Hot Cross Helical Rolling in Cone-Shaped Rolls as a Method of Severe Plastic Deformation,” Deform. Razrushenie Mater., No. 9, 13–18 (2010).Google Scholar
  14. 14.
    Yu. R. Kolobov, M. B. Ivanov, E. V. Golosov, and A. V. Penkin, “A Method for Preparation of a Submicrocrystalline Structure in Unalloyed Titanium,” RF Patent No. 2 389 568 (December 29, 2008).Google Scholar
  15. 15.
    V. F. Terent’ev, Fatigue Strength of Metals and Alloys (Intermet Inzhiniring, Moscow, 2002) [in Russian].Google Scholar
  16. 16.
    V. F. Terent’ev, “Endurance Limit of Metals and Alloys,” Metalloved. Term. Obrab. Met., No. 2, 47–56 (2008) [Met. Sci. Heat Treat. 50 (1–2), 88–96 (2008)].Google Scholar
  17. 17.
    V. I. Betekhtin, Yu. R. Kolobov, E. V. Golosov, B. K. Kardashev, and M. V. Narykova, “Influence of Severe Plastic Deformation during Helical and Longitudinal Rolling on the Structure and Properties of the Titanium Alloy VT1-0,” in Proceedings of the XIX St. Petersburg Readings on the Problems of Strength, St. Petersburg, Russia, 2010 (St. Petersburg, 2010), Part 2, pp. 4–5.Google Scholar
  18. 18.
    V. F. Terent’ev, “Fatigue Resistance of Titanium and Iron Alloys with Submicrocrystalline and Nanocrystalline Structures: A Review,” Metalloved. Term. Obrab. Met., No. 10, 21–28 (2007) [Met. Sci. Heat Treat. 49 (9–10), 476–483 (2007)].Google Scholar
  19. 19.
    V. V. Stolyarov, “Mechanical Testing for Tension of Nanostructured Materials,” Zavod. Lab., Diagn. Mater. 74(1), 54–57 (2008).Google Scholar
  20. 20.
    R. A. Andrievski and A. M. Glezer, “Strength of Nanostructures,” Usp. Fiz. Nauk 179(4), 337–358 (2009) [Phys.-Usp. 52 (4), 315–334 (2009)].CrossRefGoogle Scholar
  21. 21.
    Yu. R. Kolobov, A. G. Lipnitskii, M. B. Ivanov, and E. V. Golosov, “The Role of Diffusion-Controlled Processes in the Formation of the Structure and Properties of Metallic Nanomaterials,” Kompoz. Nanostrukt., No. 2, 5–32 (2009).Google Scholar
  22. 22.
    Yu. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherer, and H.-J. Fecht, “Deformation Mechanisms in Nanocrystalline Palladium at Large Strains,” Acta Mater. 57, 3391–3401 (2009).CrossRefGoogle Scholar
  23. 23.
    Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, and R. Z. Valiev, “Grain-Boundary Diffusion Characteristics of Nanostructured Nickel,” Scr. Mater. 44(6), 873–878 (2001).CrossRefGoogle Scholar
  24. 24.
    Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, and M. B. Ivanov, “Grain-Boundary Diffusion and Mechanisms of Creep of Nanostructured Metals,” Interface Sci. 10(1), 31–36 (2002).CrossRefGoogle Scholar
  25. 25.
    Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, M. B. Ivanov, and E. V. Naidenkin, “Diffusion and Plasticity of Submicrocrystalline Metals and Alloys,” Solid State Phenom. 94, 35–40 (2003).CrossRefGoogle Scholar
  26. 26.
    A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys: Composition, Structure, and Properties: A Reference Book (All-Russia Institute of Light Alloys, Moscow, 2009) [in Russian].Google Scholar
  27. 27.
    T. Halton, E. D. Tabachnikova, and S. Surech, “Fatigue Behavior of Nanocrystalline Metals and Alloys,” Int. J. Fatigue 27(10–12), 1147–1158 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. B. Ivanov
    • 1
  • Yu. R. Kolobov
    • 1
  • E. V. Golosov
    • 1
  • I. N. Kuz’menko
    • 1
  • V. P. Veinov
    • 2
  • D. A. Nechaenko
    • 1
  • E. S. Kungurtsev
    • 1
  1. 1.State-Run Educational Institution of Higher Vocational EducationBelgorod State University, National Research University, Nanostructured Materials and Nanotechnology Research-Education and Innovation CenterBelgorodRussia
  2. 2.State Unitary Enterprise of the Republic of TatarstanAll-Russian Scientific Research Institute of Medical InstrumentsKazanRussia

Personalised recommendations