Nanotechnologies in Russia

, Volume 6, Issue 1–2, pp 17–42 | Cite as

Biodistribution and toxicity of gold nanoparticles

Article

Abstract

This paper reviews data on the biodistribution and toxicity of five types of gold nanoparticles (GNPs) (atomic clusters and colloidal particles with diameters of 1 to 200 nm, gold nanorods (GNRs), silica/gold nanoshells (GNSs), hollow GNSs, and nanowires) in in vivo and in vitro experiments. Published data from 1995 to March 2010 are systematized according to the types and parameters of particles, their surface functionalization, models (cell or animal), examined organs, applied doses, administration routes, duration of experiments, and methods used for assessing the toxicity and concentration of GNPs in organs and their distribution between cells. A critical analysis of the data suggests some general conclusions on the key parameters of nanoparticles; methods for modifying their surface; and the doses that determine the type and kinetics of biodistribution, cytotoxicity, and toxicity at the body level.

Keywords

CTAB Gold NANOPARTICLES Dynamic Light Scattering Administration Route Gold Concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).Google Scholar
  2. 2.
    N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).Google Scholar
  3. 3.
    I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 829 (2005).Google Scholar
  4. 4.
    S. Lal, S. E. Clare, and N. J. Halas, Acc. Chem. Res. 41, 1842 (2008).Google Scholar
  5. 5.
    N. G. Khlebtsov and L. A. Dykman, J. Quant. Spectrosc. Radiat. Transfer 111, 1 (2010).Google Scholar
  6. 6.
    L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, and Biomedical Applications (Nauka, Moscow, 2008) [in Russian].Google Scholar
  7. 7.
    P. E. Chow, Gold Nanoparticles: Properties, Characterization, and Fabrication (Nova Science, New York, United States, 2010).Google Scholar
  8. 8.
    J. A. Edgar and M. B. Cortie, Gold: Science and Applications, Ed. by C. Corti and R. Holliday (CRC Press, Boca Raton, Florida, United States, 2010), p. 369.Google Scholar
  9. 9.
    G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, Drug Delivery 11, 169 (2004).Google Scholar
  10. 10.
    P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Adv. Drug Delivery Rev. 60, 1307 (2008).Google Scholar
  11. 11.
    J. J. Donnelly, B. Wahren, and M. A. Liu, J. Immunol. 175, 633 (2005).Google Scholar
  12. 12.
    D. Pissuwan, T. Niidome, and M. B. Cortie, J. Controlled Release (2010) (in press).Google Scholar
  13. 13.
    L. A. Dykman, M. V. Sumaroka, S. A. Staroverov, I. S. Zaitseva, and V. A. Bogatyrev, Biol. Bull. 31, 75 (2004).Google Scholar
  14. 14.
    L. A. Dykman and V. A. Bogatyrev, Russ. Chem. Rev. 76, 181 (2007).Google Scholar
  15. 15.
    R. Bhattacharya and P. Mukherjee, Adv. Drug Delivery Rev. 60, 1289 (2008).Google Scholar
  16. 16.
    E. Boisselier and D. Astruc, Chem. Soc. Rev. 38, 1759 (2009).Google Scholar
  17. 17.
    S. R. Grobmyer and B. M. Moudgil, Cancer Nanotechnology: Methods and Protocols (Springer, New York, United States, 2010).Google Scholar
  18. 18.
    C. L. Brown, G. Bushell, M. W. Whitehouse, D. S. Agrawal, S. G. Tupe, K. M. Paknikar, and E. R. T. Tiekink, Gold Bull. (London) 40, 245 (2007).Google Scholar
  19. 19.
    C. L. Brown, M. W. Whitehouse, E. R. T. Tiekink, and G. R. Bushell, Inflammopharmacology 16, 133 (2008).Google Scholar
  20. 20.
    M. A. Dobrovolskaia and S. E. McNeil, Nat. Nanotechnol. 2, 469 (2007).Google Scholar
  21. 21.
    P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, Nanotechnol. Sci. Appl. 1, 45 (2008).Google Scholar
  22. 22.
    G. E. Abraham, Orig. Internist 15, 132 (2008).Google Scholar
  23. 23.
    A. M. Krasinskas, J. Minda, S. H. Saul, A. Shaked, and E. E. Furth, Mod. Pathol. 17, 117 (2004).Google Scholar
  24. 24.
    S. M. Moghimi, A. C. Hunter, and J. C. Murray, Pharmacol. Rev. 53, 283 (2001).Google Scholar
  25. 25.
    P. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, J. Nanobiotechnol. 2, 12 (2004); http://www.jnanobiotechnology.com/content/2/1/12.Google Scholar
  26. 26.
    G. Oberdörster, E. Oberdörster, and J. Oberdörster, Environ. Health Perspect. 113, 823 (2005).Google Scholar
  27. 27.
    H. C. Fischer and W. C. W. Chan, Curr. Opin. Biotechnol. 18, 565 (2007).Google Scholar
  28. 28.
    C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corrigan, and M. W. Radomski, Br. J. Pharm. Pract. 150, 552 (2007).Google Scholar
  29. 29.
    S. T. Stern and S. E. McNeil, Toxicol. Sci. 101, 4 (2008).Google Scholar
  30. 30.
    N. Lewinski, V. Colvin, and R. Drezek, Small 4, 26 (2008).Google Scholar
  31. 31.
    C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Acc. Chem. Res. 41, 1721 (2008).Google Scholar
  32. 32.
    A. V. Kolesnichenko, M. A. Timofeev, and M. V. Protopopova, Ross. Nanotekhnol. 3(3–4), 54 (2008).Google Scholar
  33. 33.
    E. Casals, S. Väzquez-Campos, N. G. Bastäcute accent]us, and V. Puntes, Trends Anal. Chem. 27, 672 (2008).Google Scholar
  34. 34.
    K. L. Aillon, Y. Xie, N. El-Gendy, C. J. Berkland, and M. L. Forrest, Adv. Drug Delivery Rev. 61, 457 (2009).Google Scholar
  35. 35.
    N. R. Panyala, E. M. Peña-Méndez, and J. Havel, J. Appl. Biomed. 7, 75 (2009).Google Scholar
  36. 36.
    B. Fadeel and A. E. Garcia-Bennett, Adv. Drug Delivery Rev. 62, 362 (2010).Google Scholar
  37. 37.
    H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, Crit. Rev. Toxicol. 40, 328–346 (2010).Google Scholar
  38. 38.
    B. J. Darien, P. A. Sims, K. T. Kruse-Elliott, T. S. Homan, R. J. Cashwell, A. J. Cooley, and R. M. Albrecht, Scanning Microsc. 9, 773 (1995).Google Scholar
  39. 39.
    G. E. Abraham and P. B. Himmel, J. Nutr. Environ. Med. 7, 295 (1997).Google Scholar
  40. 40.
    J. F. Hillyer and R. M. Albrecht, Microsc. Microanal. 4, 481 (1999).Google Scholar
  41. 41.
    J. F. Hillyer and R. M. Albrecht, J. Pharm. Sci. 90, 1927 (2001).Google Scholar
  42. 42.
    J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med. Biol. 49, N309 (2004).Google Scholar
  43. 43.
    J. M. Bergen, H. A. von Recum, T. T. Goodman, A. P. Massey, and S. H. Pun, Macromol. Biosci. 6, 506 (2006).Google Scholar
  44. 44.
    J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Br. J. Radiol. 79, 248 (2006).Google Scholar
  45. 45.
    T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahishi, T. Kawano, Y. Katayama, and Y. Niidome, J. Controlled Release 114, 343 (2006).Google Scholar
  46. 46.
    K. V. Katti, R. Kannan, K. Katti, V. Kattumori, R. Pandrapraganda, V. Rahing, C. Cutler, E. J. Boote, S. W. Casteel, C. J. Smith, J. D. Robertson, and S. S. Jurrison, Czech. J. Phys. 56(Suppl. D), D23 (2006).Google Scholar
  47. 47.
    L. Balogh, S. S. Nigavekar, B. M. Nair, W. Lesniak, C. Zhang, L. Y. Sung, M. S. T. Kariapper, A. El-Jawahri, M. Llanes, B. Bolton, F. Mamou, W. Tan, A. Hutson, L. Minc, and M. K. Khan, Nanomedicine (New York) 3, 281 (2007).Google Scholar
  48. 48.
    E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, and G. Danscher, Part. Fibre Toxicol. 4, 10 (2007); http://www.particleandfibretoxicology.com/content/4/1/10.Google Scholar
  49. 49.
    W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, J. Radioanal. Nucl. Chem. 271, 455 (2007).Google Scholar
  50. 50.
    W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. Sips, and R. E. Geertsma, Biomaterials 29, 1912 (2008).Google Scholar
  51. 51.
    P. Diagaradjane, A. Shetty, J. C. Wang, A. M. Elliott, J. Schwartz, S. Shentu, H. C. Park, A. Deorukhkar, R. J. Stafford, S. H. Cho, J. W. Tunnell, J. D. Hazle, and S. Krishnan, Nano Lett. 8, 1492–1500 (2008).Google Scholar
  52. 52.
    B. Ya. Kogan, N. V. Andronova, N. G. Khlebtsov, B.N. Khlebtsov, V. M. Rudoy, O. V. Dement’eva, E. V. Sedykh, and L. N. Bannykh, in Technical Proceedings of the 2008 Nanotechnology Conference and Trade Show (NSTI-Nanotech), Nano Science and Technology Institute, Boston, Massachusetts, United States, June 1–5, 2008 (Nano Science and Technology Institute, Boston, 2008), Vol. 2, p 65.Google Scholar
  53. 53.
    P. K. Myllynen, M. J. Loughran, C. V. Howard, R. Sormunen, A. A. Walshe, and K. H. Vähäkangas, Reprod. Toxicol. 26, 130 (2008).Google Scholar
  54. 54.
    X.-L. Huang, B. Zhang, L. Ren, S.-F. Ye, L.-P. Sun, Q.-Q. Zhang, M.-C. Tan, and G.-M. Chow, J. Mater. Sci.: Mater. Med. 19, 2581 (2008).Google Scholar
  55. 55.
    T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, Small 4, 1001 (2008).Google Scholar
  56. 56.
    M. Semmler-Behnke, W. G. Kreyling, J. Lipka, S. Fertsch, A. Wenk, S. Takenaka, G. Schmid, and W. Brandau, Small 4, 2108 (2008).Google Scholar
  57. 57.
    G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, and K. Makino, Colloids Surf., B 65, 1 (2008).Google Scholar
  58. 58.
    G. Sonavane, K. Tomoda, and K. Makino, Colloids Surf., B 66, 274 (2008).Google Scholar
  59. 59.
    M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li, Mol. Cancer Ther. 7, 1730 (2008).Google Scholar
  60. 60.
    Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, J. Controlled Release 139, 81 (2009).Google Scholar
  61. 61.
    W.-S. Cho, M. Cho, J. Jeong, M. Choi, H.-Y. Cho, B.S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong, Toxicol. Appl. Pharmacol. 236, 16 (2009).Google Scholar
  62. 62.
    G. M. Fent, S. W. Casteel, D. Y. Kim, R. Kannan, K. Katti, N. Chanda, and K. Katti, Nanomedicine (New York) 5, 128 (2009).Google Scholar
  63. 63.
    R. Goel, N. Shah, R. Visaria, G. F. Paciotti, and J. C. Bischof, Nanomedicine (London) 4, 401 (2009).Google Scholar
  64. 64.
    J. H. Kim, J. H. Kim, K.-W. Kim, M. H. Kim, and Y. S. Yu, Nanotechnology 20, 505 101 (2009).Google Scholar
  65. 65.
    E. Sadauskas, N. R. Jacobsen, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, W. Kreyling, and H. Wallin, Chem. Cent. J. 3, 16 (2009); http://journal.chemistrycentral.com/content/3/1/16.Google Scholar
  66. 66.
    E. Sadauskas, G. Danscher, M. Stoltenberg, U. Vogel, A. Larsen, and H. Wallin, Nanomedicine (New York) 5, 162 (2009).Google Scholar
  67. 67.
    G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, B. N. Khlebtsov, B. Ya. Kogan, G. G. Akchurin, A. V. Shantrocha, I. L. Maksimova, N. G. Khlebtsov, and V. V. Tuchin, J. Biophotonics 2, 292 (2009).Google Scholar
  68. 68.
    G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, and C. Li, Biomaterials 30, 1928 (2009).Google Scholar
  69. 69.
    M. Bartneck, H. A. Keul, G. Zwadlo-Klarwasser, and J. Groll, Nano Lett. 10, 59 (2010).Google Scholar
  70. 70.
    S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, and W.-Y. Ong, Biomaterials 8, 2034 (2010).Google Scholar
  71. 71.
    L. Wang, Y.-F. Li, L. Zhou, Y. Liu, L. Meng, K. Zhang, X. Wu, L. Zhang, B. Li, and C. Chen, Anal. Bioanal. Chem. 396, 1105 (2010).Google Scholar
  72. 72.
    L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, Photochem. Photobiol. 85, 21 (2009).Google Scholar
  73. 73.
    J. M. Singer, L. Adlersberg, and M. Sadek, RES: J. Reticuloendothel. Soc. 12, 658 (1972).Google Scholar
  74. 74.
    M. J. Hardonk, G. Harms, and J. Koudstaal, Histochemistry 83, 473 (1985).Google Scholar
  75. 75.
    G. Renaud, R. L. Hamilton, and R. Havel, Hepatology (Phyladelphia, PA, United States) 9, 380 (1989).Google Scholar
  76. 76.
    Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, and H. Kuhn, Angew. Chem., Int. Ed. 42, 2853 (2003).Google Scholar
  77. 77.
    B. Petri, A. Bootz, A. Khalansky, T. Hekmatara, R. Muller, R. Uhl, J. Kreuter, and S. Gelperina, J. Controlled Release 117, 51 (2007).Google Scholar
  78. 78.
    X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006).Google Scholar
  79. 79.
    G. Von Maltzahn, J.-H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Cancer Res. 69, 3892 (2009).Google Scholar
  80. 80.
    B. N. Khlebtsov and N. G. Khlebtsov, Nanotechnology 19, 435 703 (2008).Google Scholar
  81. 81.
    V. A. Khanadeev, B. N. Khlebtsov, S. A. Staroverov, I. V. Vidyasheva, A. A. Skaptsov, E. S. Ileneva, V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, J. Biophotonics 4, 74 (2001).Google Scholar
  82. 82.
    S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, Acc. Chem. Res. 41, 1587 (2008).Google Scholar
  83. 83.
    V. Sharma, K. Park, and M. Srinivasarao, Mater. Sci. Eng., A 65, 1–38 (2009).Google Scholar
  84. 84.
    J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, J. Phys. Chem. C 113, 12 090 (2009).Google Scholar
  85. 85.
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science (Washington) 263, 1600 (1994).Google Scholar
  86. 86.
    G. Pacheco, Mem. Inst. Oswaldo Cruz 18, 119 (1925).Google Scholar
  87. 87.
    B. Merchant, Biologicals 26, 49 (1998).Google Scholar
  88. 88.
    R. Eisler, Biol. Trace Elem. Res. 100, 1 (2004).Google Scholar
  89. 89.
    A. K. Salem, P. C. Searson, and K. W. Leong, Nat. Mater. 2, 668 (2003).Google Scholar
  90. 90.
    C. M. Goodman, C. D. McCusker, T. Yilmaz, and V. M. Rotello, Bioconjugate Chem. 15, 897 (2004).Google Scholar
  91. 91.
    A. G. Tkachenko, H. Xie, Y. Liu, D. Coleman, J. Ryan, W. R. Glomm, M. K. Shipton, S. Franzen, and D. L. Feldheim, Bioconjugate Chem. 15, 482 (2004).Google Scholar
  92. 92.
    E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, Small 1, 325 (2005).Google Scholar
  93. 93.
    R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, Langmuir 21, 10 644 (2005).Google Scholar
  94. 94.
    J. M. de la Fuente and C. C. Berry, Bioconjugate Chem. 16, 1176 (2005).Google Scholar
  95. 95.
    N. Pernodet, X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich, Small 2, 766 (2006).Google Scholar
  96. 96.
    D. Shenoy, W. Fu, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, and M. Amiji, Int. J. Nanomed. 1, 51 (2006).Google Scholar
  97. 97.
    D. S. K. Ikah, C. V. Howard, W. G. McLean, M. Brust, and T. R. Tshikhudo, Toxicology 219, 238 (2006).Google Scholar
  98. 98.
    H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, Langmuir 22, 2 (2006).Google Scholar
  99. 99.
    Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, Small 3, 1941 (2007).Google Scholar
  100. 100.
    J. A. Khan, B. Pillai, T. K. Das, Y. Singh, and S. Maiti, ChemBioChem 8, 1237 (2007).Google Scholar
  101. 101.
    H. K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, and A. K. Dasgupta, Nanomedicine (New York) 3, 111 (2007).Google Scholar
  102. 102.
    D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, J. Am. Chem. Soc. 129, 7661 (2007).Google Scholar
  103. 103.
    C.-H. Su, H.-S. Sheu, C.-Y. Lin, C.-C. Huang, Y.-W. Lo, Y.-C. Pu, J.-C. Weng, D.-B. Shieh, J.-H. Chen, and C.-S. Yeh, J. Am. Chem. Soc. 129, 2139 (2007).Google Scholar
  104. 104.
    C. Yu, L. Varghese, and J. Irudayaraj, Langmuir 23, 9114 (2007).Google Scholar
  105. 105.
    C.-W. Kuo, J.-J. Lai, K. H. Wei, and P. Chen, Adv. Funct. Mater. 17, 3707 (2007).Google Scholar
  106. 106.
    K. B. Male, B. Lachance, S. Hrapovic, G. Sunahara, and J. H. T. Luong, Anal. Chem. 80, 5487 (2008).Google Scholar
  107. 107.
    E. Jan, S. J. Byrne, M. Cuddihy, A. M. Davies, Y. Volkov, Y. K. Gun’ko, and N. A. Kotov, ACS Nano 2, 928 (2008).Google Scholar
  108. 108.
    A. P. Leonov, J. Zheng, J. D. Clogston, S. T. Stern, A. K. Patri, and A. Wei, ACS Nano 2, 2481 (2008).Google Scholar
  109. 109.
    S. Wang, W. Lu, O. Tovmachenko, U. S. Rai, H. Yu, and P. C. Ray, Chem. Phys. Lett. 463, 145 (2008).Google Scholar
  110. 110.
    T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, Small 4, 153 (2008).Google Scholar
  111. 111.
    C. J. Gannon, C. R. Patra, R. Bhattacharya, P. Mukherjee, and S. A. Curley, J. Nanobiotechnol. 6, 2 (2008); http://www.jnanobiotechnology.com/content/6/1/2.Google Scholar
  112. 112.
    A. Simon-Deckers, E. Brun, B. Gouget, M. Carriére, and C. Sicard-Roselli, Gold Bull. (London) 41, 187 (2008).Google Scholar
  113. 113.
    L. Sun, D. Liu, and Z. Wang, Langmuir 24, 10 293 (2008).Google Scholar
  114. 114.
    Y. Qu and X. Lü, Biomed. Mater. 4, 025 007 (2009).Google Scholar
  115. 115.
    J. H. Fan, W. I. Hung, W. T. Li, and J. M. Yeh, in Proceedings of the International Federation for Medical and Biological Engineering (IFMBE) “The 13th International Conference on Biomedical Engineering (ICBME 2008)”, Singapore, December 3–6, 2008, Ed. by C. T. Lim and J. C. H. Goh (Springer, New York, United States, 2009), Vol. 23, p. 870.Google Scholar
  116. 116.
    A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, Small 5, 701 (2009).Google Scholar
  117. 117.
    Y.-S. Chen, Y.-C. Hung, I. Liau, and G. S. Huang, Nanoscale Res. Lett. 4, 858 (2009).Google Scholar
  118. 118.
    S. Salmaso, P. Caliceti, V. Amendola, M. Meneghetti, J. P. Magnusson, G. Pasparakis, and C. Alexander, J. Mater. Chem. 19, 1608 (2009).Google Scholar
  119. 119.
    G. Li, D. Li, L. Zhang, J. Zhai, and E. Wang, Chem.—Eur. J. 15, 9868 (2009).Google Scholar
  120. 120.
    M. Zhou, B. Wang, Z. Rozynek, Z. Xie, J. O. Fossum, X. Yu, and S. Raaen, Nanotechnology 20, 505 606 (2009).Google Scholar
  121. 121.
    P. Murawala, S. M. Phadnis, R. R. Bhonde, and B. L. V. Prasad, Colloids Surf., B 73, 224 (2009).Google Scholar
  122. 122.
    T. Pfaller, V. Puntes, E. Casals, A. Duschl, and G. J. Oostingh, Nanotoxicology 3, 46 (2009).Google Scholar
  123. 123.
    J. Chen and J. Irudayaraj, ACS Nano 3, 4071 (2009).Google Scholar
  124. 124.
    C. L. Villiers, H. Freitas, R. Couderc, M.-B. Villiers, and P. N. Marche, J. Nanopart. Res. 12, 55 (2010).Google Scholar
  125. 125.
    S. Singh, V. D’Britto, A. A. Prabhune, C. V. Ramana, A. Dhawan, and B. L. V. Prasad, New J. Chem. 34, 294 (2010).Google Scholar
  126. 126.
    S. Chen, Y. Ji, Q. Lian, Y. Wen, H. Shen, and N. Jia, Nano Biomed. Eng. 2, 19 (2010).Google Scholar
  127. 127.
    R. G. Rayavarapu, W. Petersen, L. Hartsuiker, P. Chin, H. Janssen, F. W. B. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen, Nanotechnology 21, 145 101 (2010).Google Scholar
  128. 128.
    W.-S. Cho, S. Kim, B. S. Han, W. C. Son, and J. Jeong, Toxicol. Lett. 191, 96 (2009).Google Scholar
  129. 129.
    L. M. Browning, K. J. Lee, T. Huang, P. D. Nallathamby, J. E. Lowman, and X.-H. N. Xu, Nanoscale 1, 138 (2009).Google Scholar
  130. 130.
    A. Ya. Pocheptsov, N. I. Mamulaishvili, Z. V. Babayeva, and Y. I. Velikorodnaya in Production and Application of Nanomaterials in Russia: Toxicological, Exposure, and Regulatory Issues (T-Press, Moscow, 2009), p. 62.Google Scholar
  131. 131.
    C. Lasagna-Reeves, D. Gonzalez-Romero, M. A. Barria, I. Olmedo, A. Clos, V. M. Sadagopa Ramanujam, A. Urayama, L. Vergara, M. J. Kogan, and C. Soto, Biochem. Biophys. Res. Commun. 393, 649–655 (2010).Google Scholar
  132. 132.
    W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, Nat. Nanotechnol. 3, 145 (2008).Google Scholar
  133. 133.
    M. Tsoli, H. Kuhn, W. Brandau, H. Esche, and G. Schmid, Small 1, 841 (2005).Google Scholar
  134. 134.
    J. A. Ryan, K. W. Overton, M. E. Speight, C. N. Oldenburg, L. N. Loo, W. Robarge, S. Franzen, and D. L. Feldheim, Anal. Chem. 79, 9150 (2007).Google Scholar
  135. 135.
    H. Y. Jia, Y. Liu, X. J. Zhang, L. Han, L. B. Du, Q. Tian, and Y. C. Xu, J. Am. Chem. Soc. 131, 40 (2009).Google Scholar
  136. 136.
    J. J. Li, L. Zou, D. Hartono, C.-N. Ong, B.-H. Bay, and L.-Y. Lanry Yung, Adv. Mater. (Weinheim) 20, 138 (2008).Google Scholar
  137. 137.
    C. Uboldi, D. Bonacchi, G. Lorenzi, M. I. Hermanns, C. Pohl, G. Baldi, R. E. Unger, and C. J. Kirkpatrick, Part. Fibre Toxicol. 6, 18 (2009); http://www.particleandfibretoxicology.com/content/6/1/18.Google Scholar
  138. 138.
    M. A. Dobrovolskaia, A. K. Patri, J. Zheng, J. D. Clogston, N. Ayub, P. Aggarwal, B. W. Neun, J. B. Hall, and S. E. McNeil, Nanomedicine (New York) 5, 106 (2009).Google Scholar
  139. 139.
    S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, A. Karim, and J. F. Douglas, ACS Nano 4, 365 (2010).Google Scholar
  140. 140.
    I. Montes-Burgos, D. Walczyk, P. Hole, J. Smith, I. Lynch, and K. Dawson, J. Nanopart. Res. 12, 47 (2010).Google Scholar
  141. 141.
    S. A. Staroverov, N. M. Aksinenko, K. P. Gabalov, O. A. Vasilenko, I. V. Vidyasheva, S. Yu. Shchyogolev, and L. A. Dykman, Gold Bull. (London) 42, 153 (2009).Google Scholar
  142. 142.
    T. B. Huff, M. N. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, Langmuir 23, 1596 (2007).Google Scholar
  143. 143.
    H. J. Parab, H. M. Chen, T.-C. Lai, J. H. Huang, P. H. Chen, R.-S. Liu, M. Hsiao, C.-H. Chen, D.-P. Tsai, and Y.-K. Hwu, J. Phys. Chem. C 113, 7574 (2009).Google Scholar
  144. 144.
    D. Pissuwan, S. M. Valenzuela, M. C. Killingsworth, X. Xu, and M. B. Cortie, J. Nanopart. Res. 9, 1109 (2007).Google Scholar
  145. 145.
    B.-S. Choi, M. Iqbal, T. Lee, Y. H. Kim, and G. Tae, J. Nanosci. Nanotechnol. 8, 4670 (2008).Google Scholar
  146. 146.
    M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, Nano Lett. 9, 287 (2009).Google Scholar
  147. 147.
    L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Proc. Natl. Acad. Sci. USA 100, 13549 (2003).Google Scholar
  148. 148.
    C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett. 5, 709 (2005).Google Scholar
  149. 149.
    J. M. Stern, J. Stanfield, Y. Lotan, S. Park, J.-T. Hsieh, and J. A. Cadeddu, J. Endourology 21, 939 (2007).Google Scholar
  150. 150.
    S.-Y. Liu, Z.-S. Liang, F. Gao, S.-F. Luo, and G.-Q. Lu, J. Mater. Sci.: Mater. Med. 21, 665 (2010).Google Scholar
  151. 151.
    O. Bar-Ilan, R. M. Albrecht, V. E. Fako, and D. Y. Furgeson, Small 5, 1897 (2009).Google Scholar
  152. 152.
    V. Wiwanitkit, A. Sereemaspun, and R. Rojanathanes, Cytopathology 20, 109 (2009).Google Scholar
  153. 153.
    A. Sereemaspun, R. Rojanathanes, and V. Wiwanitkit, Renal Failure 30, 323 (2008).Google Scholar
  154. 154.
    V. Wiwanitkit, A. Sereemaspun, and R. Rojanathanes, Fertil. Steril. 91, 7 (2009).Google Scholar
  155. 155.
    E. V. Shlyakhto, Nanotechnologies in Biology and Medicine (Lyubavich, St. Petersburg, 2009) [in Russian].Google Scholar
  156. 156.
    D. A. Giljohan, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Angew. Chem., Int. Ed. 49, 3280 (2010).Google Scholar
  157. 157.
    D. S. Seferos, D. A. Giljohan, W. L. Daniel, H. D. Hill, A. E. Prigodich, and C. A. Mirkin, J. Am. Chem. Soc. 129, 15 477 (2007).Google Scholar
  158. 158.
    T. S. Ralston, A. Wei, and S. A. Boppart, J. Mater. Chem. 19, 6407 (2009).Google Scholar
  159. 159.
    X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Lasers Med. Sci. 23, 217 (2008).Google Scholar
  160. 160.
    W. H. De Jong and P. J. Borm, Int. J. Nanomed. 3, 133 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations