Nanotechnologies in Russia

, Volume 5, Issue 11–12, pp 857–863 | Cite as

An investigation into the interaction between carbon-based nanomaterials and Escherichia coli cells using atomic force microscopy

  • D. G. Deryabin
  • A. S. Vasilchenko
  • E. S. Aleshina
  • A. S. Tlyagulova
  • H. N. Nikiyan


Using atomic force microscopy (AFM), the nature of the contact between a wide range of carbonbased nanomaterials (CBNs) and Escherichia coli cells is described and the consequences of such an interaction are estimated. It is shown that the contact of multiwall and a number of single-wall carbon nanotubes with the surface of a model microorganism carries a probabilistic nature and is not accompanied by changes in the morphology and viability of bacterial cells. The damage of the surface structures and the consequent destruction of Escherichia coli are observed upon contact with single-wall carbon nanotubes with low degrees of purification, which is presumably determined by the presence of technological impurities in CBNs. A significant enhancement of the affinity of C60 fullerenes functionalized by amine groups to the surface of model microorganisms, which also leads to the development of a bactericidal effect, is shown.


Atomic Force Microscopy Single Wall Carbon Single Wall Carbon Nanotubes Atomic Force Microscopy Technique Outer Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ya. Vul’ and V. I. Sokolov, “Investigation of Nanocarbon in Russia: From Fullerenes to Nanotubes and Nanodiamonds,” Ross. Nanotekhnol. 2(3–4), 17–30 (2007).Google Scholar
  2. 2.
    F. Gottschalk, T. Sonderer, R. W. Scholz, and B. Nowack, “Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions,” Environ. Sci. Technol. 43(24), 9216–9222 (2009).CrossRefGoogle Scholar
  3. 3.
    R. H. Hurt, M. Monthioux, and A. Kane, “Toxicology of Carbon Nanomaterials: Status, Trends, and Perspectives on the Special Issue,” Carbon 44(6), 1028–1033 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, “Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity,” Langmuir 23(17), 8670–8673 (2007).CrossRefGoogle Scholar
  5. 5.
    S. Kang, M. Mauter, and M. Elimelech, “Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity,” Environ. Sci. Technol. 42(19), 7528–7534 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial Effects of Carbon Nanotubes: Size Does Matter!” Langmuir 24(13), 6409–6413 (2008).CrossRefGoogle Scholar
  7. 7.
    E. A. Obraztsova, E. P. Lukashev, A. P. Zarubina, I. M. Parkhomenko, and I. V. Yaminsky, “Bactericidal Action of Single-Walled Carbon Nanotubes,” Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 3, 81–84 (2009) [Moscow Univ. Phys. Bull. 64 (3), 320–323 (2009)].Google Scholar
  8. 8.
    A. P. Zarubina, E. P. Lukashev, L. I. Deev, I. M. Parkhomenko, and A. B. Rubin, “Biotesting the Biological Effects of Single-Walled Carbon Nanotubes Using Bioluminescent Bacteria Test-System,” Ross. Nanotekhnol. 4(11–12), 152–155 (2009) [Nanotechnol. Russ. 4 (11–12), 871–875 (2009)].Google Scholar
  9. 9.
    C. Blaise, F. Gagne, J. F. Ferard, and P. Eullaffroy, “Ecotoxicity of Selected Nano-Materials to Aquatic Organisms,” Environ. Toxicol. 23(5), 591–598 (2008).CrossRefGoogle Scholar
  10. 10.
    I. Velzeboer, A. J. Hendriks, A. M. J. Ragas, and D. van de Meent, “Nanomaterials in the Environment Aquatic Ecotoxicity Tests of Some Nanomaterials,” Environ. Toxicol. Chem. 27(9), 1942–1947 (2008).CrossRefGoogle Scholar
  11. 11.
  12. 12.
    V. S. Danilov, A. P. Zarubina, G. E. Eroshnikov, L. N. Solov’eva, F. V. Katashev, and G. B. Zavil’gel’skii, “Sensor Bioluminescent Systems Based on Lux-Operons of Different Types of Luminescent Bacteria,” Vestn. Mosk. Univ., Ser. 16: Biol., No. 3, 20–24 (2002).Google Scholar
  13. 13.
    S. Liu, L. Wei, L. Hao, N. Fang, M. W. Chang, R. Xu, Y. Yang, and Y. Chen, “Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube,” ACS Nano 3(12), 3891–3902 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Pulskamp, S. Diabaté, and H. F. Krug, “Carbon Nanotubes Show No Sign of Acute Toxicity but Induce Intracellular Reactive Oxygen Species in Dependence on Contaminants,” Toxicol. Lett. 168(10), 58–74 (2007).CrossRefGoogle Scholar
  15. 15.
    V. K. K. Upadhyayula, S. Deng, G. B. Smith, and M. C. Mitchell, “Adsorption of Bacillus Subtilis on Single-Walled Carbon Nanotube Aggregates, Activated Carbon and NanoCeram™[superscript roman],” Water Res. 43(1), 148–156 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Simon-Deckers, S. Loo, M. Mayne-L’hermite, N. Herlin-Boime, N. Menguy, C. Reynaud, B. Gouget, and M. Carriere, “Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria,” Environ. Sci. Technol. 43(21), 8423–8429 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. G. Deryabin
    • 1
  • A. S. Vasilchenko
    • 1
  • E. S. Aleshina
    • 1
  • A. S. Tlyagulova
    • 1
  • H. N. Nikiyan
    • 1
  1. 1.Orenburg State UniversityOrenburgRussia

Personalised recommendations