Nanotechnologies in Russia

, Volume 5, Issue 9–10, pp 676–695 | Cite as

Introscopy of quantum nanoelectronic devices

  • O. A. Tkachenko
  • V. A. Tkachenko
  • Z. D. Kvon
  • A. V. Latyshev
  • A. L. Aseev
Articles

Abstract

Semiconductor nanoelectronic quantum devices are one of the achievements of contemporary physics and laboratory nanotechnologies. Short thin current channels are formed by electric fields in the plane of the two-dimensional electron gas deep below the surface of these devices. The real distribution of the electric fields and the picture of quantum transport in the channels can be reconstructed only by the combined experimental and numerical probing of the nanostructure. In this work, a concept of numerical introscopy, a method which is a natural continuation of the structural and electrophysical diagnostics and helps restore the picture of hidden processes and phenomena in nanostructures, is introduced on the basis of a few examples of the fabrication and investigation of nanodevices.

Keywords

Coulomb Blockade Quantum Point Contact Ring Interferometer 2DEG Density Coulomb Oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Oshchepkov and A. P. Merkulov, Introscopy (Znanie, Moscow, 1967) [in Russian].Google Scholar
  2. 2.
    O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheev, Z. D. Kvon, and J. C. Portal, “Electrostatic Potential, Energy Spectrum, and Fano Resonances in a Ballistic Ring Interferometer Based on an AlGaAs/GaAs Heterojunction,” Pis’ma Zh. Eksp. Teor. Fiz. 71(6), 366–371 (2000) [JETP Lett. 71 (6), 255–258 (2000)].Google Scholar
  3. 3.
    V. A. Tkachenko, Z. D. Kvon, O. A. Tkachenko, D. G. Baksheev, O. Estibals, and J. C. Portal, “Coulomb Blockade in a Lateral Triangular Small Quantum Dot,” Pis’ma Zh. Eksp. Teor. Fiz. 76(12), 850–854 (2002) [JETP Lett. 76 (12), 720–723 (2002)].Google Scholar
  4. 4.
    V. A. Tkachenko, O. A. Tkachenko, Z. D. Kvon, D. G. Baksheev, A. L. Aseev, and J. C. Portal, “Coherent Scattering of Electrons in a Small Quantum Dot,” Pis’ma Zh. Eksp. Teor. Fiz. 80(9), 688–692 (2004) [JETP Lett. (9), 588–592 (2004)].Google Scholar
  5. 5.
    O. A. Tkachenko, V. A. Tkachenko, Z. D. Kvon, D. G. Baksheev, J.-C. Portal, and A. L. Aseev, “Steering of Electron Wave in Three-Terminal Small Quantum Dot,” in Proceedings of the 13th International Symposium “Nanostructures: Physics and Technology,” St. Petersburg, Russia, June 20–25, 2005 (St. Petersburg, 2005), pp. 8–9.Google Scholar
  6. 6.
    V. A. Tkachenko, A. A. Bykov, D. G. Baksheev, O. A. Tkachenko, L. V. Litvin, A. V. Latyshev, T. A. Gavrilova, A. L. Aseev, O. Estibals, and J. C. Portal, “Single-Electron Charging of Triangular Quantum Dots in a Ring Interferometer,” Zh. Eksp. Teor. Fiz. 124(2) 351–366 (2003) [JETP 97 (2), 317–330 (2003); D. G. Baksheyev, A. A. Bykov, V. A. Tkachenko, O. A. Tkachenko, L. V. Litvin, A. V. Latyshev, A. L. Aseev, O. Estibals, and J.-C. Portal, “Coulomb Interaction of Triangular Quantum Dots in a Small Ring Interferometer,” Int. J. Nanosci. 2, 495–503 (2003).Google Scholar
  7. 7.
    V. A. Tkachenko, Z. D. Kvon, D. V. Shcheglov, A. V. Latyshev, A. I. Toropov, O. A. Tkachenko, D. G. Baksheyev, and A. L. Aseev, “Aharonov-Bohm Oscillation Amplitude in Small Ballistic Interferometers,” Pis’ma Zh. Eksp. Teor. Fiz. 79(3), 168–172 (2004) [JETP Lett. 79 (3), 136–140 (2004)].Google Scholar
  8. 8.
    V. A. Tkachenko, D. V. Sheglov, Z. D. Kvon, E. B. Olshanetsky, A. V. Latyshev, A. I. Toropov, O. A. Tkachenko, J.-C. Portal, and A. L. Aseev, “Smallest Aharonov-Bohm Interferometer, Fabricated by Local Anodic Oxidation,” in Proceedings of the 14th International Symposium “Nanostructures: Physics and Technology,” St. Petersburg, Russia, June 26–30, 2006 (St. Petersburg, 2006), pp. 250–251.Google Scholar
  9. 9.
    D. G. Baksheyev, O. A. Tkachenko, and V. A. Tkachenko, “The Role of Intersubband Mixing in Single-Electron Charging of an Open Quantum Dot,” Physica E (Amsterdam) 6, 414–417 (2000).ADSGoogle Scholar
  10. 10.
    O. A. Tkachenko, D. G. Baksheyev, V. A. Tkachenko, C.-T. Liang, M. Y. Simmons, C. G. Smith, D. A. Ritchie, G.-H. Kim, and M. Pepper, “Coulomb Charging Effect in an Open Quantum Dot Device,” J. Phys.: Condens. Matter 13, 9515–9534 (2001); V. A. Tkachenko, D. G. Baksheyev, O. A. Tkachenko, and C.-T. Liang, “Coulomb Oscillations of the Ballistic Conductance in a Quasi-One-Dimensional Quantum Dot,” Pis’ma Zh. Eksp. Teor. Fiz. 74 (4), 229–232 (2001) [JETP Lett. 74 (4), 209–212 (2001)].CrossRefADSGoogle Scholar
  11. 11.
    O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheyev, K. S. Pyshkin, R. H. Harrell, E. H. Linfield, D. A. Ritchie, and C. J. B. Ford, “Electrostatic Potential and Quantum Transport in a One-Dimensional Channel of an Induced Two-Dimensional Electron Gas,” J. Appl. Phys. 89, 4993–5000 (2001).CrossRefADSGoogle Scholar
  12. 12.
    C.-T. Liang, O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheyev, M. Y. Simmons, D. A. Ritchie, and M. Pepper, “Gradual Decrease of Conductance of an Adiabatic Ballistic Constriction below 2e2/h,” Phys. Rev. B: Condens. Matter 70, 195 324-1–195 324-5 (2004).Google Scholar
  13. 13.
    V. T. Renard, O. A. Tkachenko, V. A. Tkachenko, T. Ota, N. Kumada, J. C. Portal, and Y. Hirayama, “Boundary-Mediated Electron-Electron Interactions in Quantum Point Contacts,” Phys. Rev. Lett. 100, 186 801-1–186 801-4 (2008).CrossRefGoogle Scholar
  14. 14.
    A. J. Peck and S. J. Bending, “A New Approach to the Modelling of GaAs/AlGaAs Nanostructures,” Semicond. Sci. Technol. 9, 188–192 (1994); S. E. Laux, D. J. Frank, and F. Stern,” Quasi-One-Dimensional Electron States in a Split-Gate GaAs/AlGaAs Heterostructure,” Surf. Sci. 196, 101–106 (1988).CrossRefADSGoogle Scholar
  15. 15.
    M. Cahay, M. McLennan, and S. Datta, “Conductance of an Array of Elastic Scatterers: A Scattering-Matrix Approach,” Phys. Rev. B: Condens. Matter 37, 10 125–10 136 (1988); Y. Takagaki and D. K. Ferry, “Conductance of Quantum Waveguides with a Rough Boundary,” J. Phys.: Condens. Matter 4, 10 421–10 432 (1992).Google Scholar
  16. 16.
    T. Ando, “Quantum Point Contacts in Magnetic Fields,” Phys. Rev. B: Condens. Matter 44 8017–8027 (1991); T. Usuki, M. Saito, M. Takatsu, R. A. Kiehl, and N. Yokoyama, “Numerical Analysis of Ballistic-Electron Transport in Magnetic Fields by Using a Quantum Point Contact and a Quantum Wire,” Phys. Rev. B: Condens. Matter 52, 8244–8255 (1995).ADSGoogle Scholar
  17. 17.
    L. R. C. Fonseca, A. N. Korotkov, K. K. Likharev, and A. A. Odintsov, “A Numerical Study of the Dynamics and Statistics of Single Electron Systems,” J. Appl. Phys. 78, 3238–3251 (1995).CrossRefADSGoogle Scholar
  18. 18.
    J. A. Nixon, J. H. Davies, and H. U. Baranger, “Breakdown of Quantized Conductance in Point Contacts Calculated Using Realistic Potentials,” Phys. Rev. B: Condens. Matter 43, 12 638–12 641 (1991).Google Scholar
  19. 19.
    M. Stopa, “Quantum Dot Self-Consistent Electronic Structure and the Coulomb Blockade,” Phys. Rev. B: Condens. Matter 54, 13 767–13 783 (1996).Google Scholar
  20. 20.
    C.-T. Liang, M. Y. Simmons, C. G. Smith, G. H. Kim, D. A. Ritchie, and M. Pepper, “Experimental Evidence for Coulomb Charging Effects in an Open Quantum Dot at Zero Magnetic Field,” Phys. Rev. Lett. 81, 3507–3510 (1998).CrossRefADSGoogle Scholar
  21. 21.
    I. V. Zozoulenko, A. S. Sachrajda, C. Gould, K.-F. Berggren, P. Zawadzki, Y. Feng, and Z. Wasilewski, “Few-Electron Open Dots: Single Level Transport,” Phys. Rev. Lett. 83(9), 1838–1841 (1999); P. Debray, O. E. Raichev, P. Vasilopoulos, M. Rahman, R. Perrin, and W. C. Mitchell, “Ballistic Electron Transport in Stubbed Quantum Waveguides: Experiment and Theory,” Phys. Rev. B: Condens. Matter 61 (9), 10 950–10 958 (2000).CrossRefADSGoogle Scholar
  22. 22.
    V. L. Al’perovich, N. T. Moshegov, A. S. Terekhov, O. A. Tkachenko, N. T. Moshegov, A. I. Toropov, and A. S. Yaroshevich, “Photocurrent Resonances in Short-Period AlAs/GaAs Superlattices in an Electric Field,” Fiz. Tverd. Tela (St. Petersburg) 41(1), 159–164 (1999) [Phys. Solid State 41 (1), 143–147 (1999)]; V. L. Al’perovich, B. A. Tkachenko, O. A. Tkachenko, N. T. Moshegov, A. I. Toropov, and A. S. Yaroshevich, “Transformation of Quantum Size Levels into Virtual Levels at the Boundary between p-GaAs and an AlAs/GaAs Superlattice,” Pis’ma Zh. Eksp. Teor. Fiz. 70 (2), 112–117 (1999) [JETP Lett. 70 (2), 117–122 (1999)].Google Scholar
  23. 23.
    Z. D. Kvon, L. V. Litvin, V. A. Tkachenko, and A. L. Aseev, “One-Electron Transistors Based on Coulomb Blockade and Quantum Interference,” Usp. Fiz. Nauk 169(4), 471–474 (1999) [Phys.-Usp. 42 (4), 402-4-5 (1999)].CrossRefGoogle Scholar
  24. 24.
    A. A. Bykov, D. G. Baksheev, L. V. Litvin, V. P. Migal’, E. B. Ol’shanetskii, M. Cassé, D. K. Maude, and J. C. Portal, “Transport Properties of a GaAs/AlGaAs Ring Interferometer in the Tunneling Regime,” Pis’ma Zh. Eksp. Teor. Fiz. 71(10), 631–636 (2000) [JETP Lett. 71 (10), 434–437 (2000)].Google Scholar
  25. 25.
    R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, and W. Wegscheider, “In-Plane Gates and Nanostructures Fabricated by Direct Oxidation of Semiconductor Heterostructures with an Atomic Force Microscope,” Appl. Phys. Lett. 73, 262–264 (1988).CrossRefADSGoogle Scholar
  26. 26.
    A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, “Energy Spectra of Quantum Rings,” Nature (London) 413, 822–825 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • O. A. Tkachenko
    • 1
  • V. A. Tkachenko
    • 1
  • Z. D. Kvon
    • 1
  • A. V. Latyshev
    • 1
  • A. L. Aseev
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations