Nanotechnologies in Russia

, Volume 5, Issue 7–8, pp 506–520 | Cite as

Nanoionics: New materials and supercapacitors

  • A. L. Despotuli
  • A. V. Andreeva


The review presents the results of investigations of solid state nanomaterials and nanosystems with fast ion transport developed at the IMT RAS. The concept of a new branch of science, “nanoionics”, is proposed. New optically active physicochemical nanosystems Ag(Cu)I-M, with record high concentrations of rare-earth and transition metals (M) were discovered. The development of a new class of impulse high capacity sub-voltage devices with coherent heterojunctions, “nanoionic supercapacitors”, was initiated within the framework of a new direction, “nanoionics of advanced superionic conductors”. A search for areas of nanoionic device application was made with regard to the development of deep-sub-voltage nanoelectronics and related technologies in the nearest 5–10 years and the creation of high-density digital logics and memory, operating in hybrid nanostructures due to the combination of electron quantum transport and classical ion movement (nanoelionics) in the long future prospect.


Superionic Conductor Gate Length Integrate Circuit Capacity Density Film Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Despotuli and V. I. Nikolaichik, “A Step towards Nanoionics,” Solid State Ionics 60(4), 275–278 (1993).CrossRefGoogle Scholar
  2. 2.
    A. L. Despotuli, A. V. Andreeva, and B. Rambabu, “Nanoionics of Advanced Superionic Conductors,” Ionics 11(3–4), 306–314 (2005).CrossRefGoogle Scholar
  3. 3.
    A. L. Despotuli, A. V. Andreeva, and V. Rambabu, “Nanoionics of Advanced Superionic Conductors,” Nano- Mikrosist. Tekh., No. 2, 5–13 (2005).Google Scholar
  4. 4.
    J. Maier, “Nanoionics: Ion Transport and Electrochemical Storage in Confined Systems,” Nat. Mater. 4(11), 805–815 (2005).CrossRefADSPubMedGoogle Scholar
  5. 5.
    S. Yamaguchi, “Nanoionics—Present and Future Prospects,” Sci. Technol. Adv. Mater. 8(6), 503 (2007).CrossRefGoogle Scholar
  6. 6.
    R. Waser and M. Aono, “Nanoionics-Based Resistive Switching Memories,” Nat. Mater. 6(11), 833–840 (2007).CrossRefADSPubMedGoogle Scholar
  7. 7.
    J. J. Yang, M. D. Picket, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices,” Nat. Nanotechnol. 3(7), 429–433 (2008).CrossRefPubMedGoogle Scholar
  8. 8.
    J. A. Nessel, R. Q. Lee, C. H. Mueller, M. N. Kozicki, M. Ren, and J. Morse, “A Novel Nanoionics-Based Switch for Microwave Applications,” in Proceedings of the IEEE MTT-S International Microwave Symposium 2008 (IMS-2008), Atlanta, Georgia, United States, June 15–20, 2008 (Atlanta, 2008), p. TH4E-01.Google Scholar
  9. 9.
    V. V. Zhirnov and R. K. Cavin, “Nanodevices: Charge of the Heavy Brigade,” Nat. Nanotechnol. 3(7), 377–378 (2008).CrossRefADSPubMedGoogle Scholar
  10. 10.
    V. I. Nikolaichik and A. L. Despotuli, “Electron Beam Writing in Thin Films of Highly Conducting Solid Electrolytes RbAg4I5 and CsAg4Br3 − xI2 + x,” Philos. Mag. Lett. 67(1), 19–24 (1993).CrossRefADSGoogle Scholar
  11. 11.
    A. L. Despotuli, A. A. Shestakov, and N. V. Lichkova, “An External Electric Field Effect in Electron-Beam Lithography of the RbAg4I5 Solid Electrolyte Film,” Solid State Ionics 70–71(Part 1), 130–133 (1994).CrossRefGoogle Scholar
  12. 12.
    A. L. Despotuli, L. A. Matveeva, and L. A. Despotuli, “UV Absorption of Thin-Film RbAg4I5-RE (Sm, Yb) Systems,” Ionics 4(5–6), 383–389 (1998).CrossRefGoogle Scholar
  13. 13.
    A. L. Despotuli and L. A. Despotuli, “Influence of Samarium on Optical Absorption in Thin Films of the Solid Electrolyte RbAg4I5,” Fiz. Tverd. Tela (St. Petersburg), 39(9), 1544–1547 (1997) [Phys. Solid State 39 (9), 1374–1377 (1997)].Google Scholar
  14. 14.
    A. L. Despotuli, V. I. Levashov, and L. A. Matveeva, “Insertion of 3d- and 4f-Elements into Silver Iodide,” Elektrokhimiya 39(5), 526–532 (2003) [Russ. J. Electrochem. 39 (5), 472–477 (2003)].Google Scholar
  15. 15.
    A. L. Despotuli and V. I. Levashov, “Insertion of Transition, Rare-Earth, and Actinoid Elements Into Agl and Cul,” Chem. Prep. Server, Inorg. Chem. (2002) (
  16. 16.
    A. L. Despotuli and L. A. Matveeva, “UV Absorption of RbAg4I5-RE (Sm, Yb) Thin-Film Systems,” Fiz. Tverd. Tela (St. Petersburg), 41(2), 218–222 (1999) [Phys. Solid State 41 (2), 192–196 (1999)].Google Scholar
  17. 17.
    A. Despotuli, “Insertion of Rare-Earth Metals into the Agl-Based Compound: First Evidence of Disordering and Strong Modification of β- and γ-AgI Crystal Structures,” in NATO Science Series: II. Mathematics, Physics, and Chemistry, Vol. 61: New Trends in Intercalation Compounds for Energy Storage, Ed. by C. Julien, J. P. Pereira-Ramos, and A. Momchilov (Kluwer Academic, Dordrecht, The Netherlands, 2002), pp. 455–462.Google Scholar
  18. 18.
    R. Beaulac, P. Archer, and D. R. Gamelin, “Luminescence in Colloidal Mn2+-Doped Semiconductor Nanocrystals,” J. Solid State Chem. 181(7), 1582–1589 (2008).CrossRefADSGoogle Scholar
  19. 19.
    A. V. Andreeva and A. L. Despotuli, “Interface Design in Nanosystems of Advanced Superionic Conductors,” Ionics 11(1–2), 152–160 (2005).CrossRefGoogle Scholar
  20. 20.
    A. L. Despotuli and A. V. Andreeva, “High-Capacitance Capacitors for 0.5-Voltage Nanoelectronics of the Future,” Sovrem. Elektron., No. 7, 24–29 (2007).Google Scholar
  21. 21.
    E. Lehovec, “Space-Charge Layer and Distribution of Lattice Defects at the Surface of Ionic Crystals,” J. Chem. Phys. 21(7), 1123–1128 (1953).CrossRefADSGoogle Scholar
  22. 22.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, and J. Santamaria, “Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2: Y2O3/SrTiO3 Heterostructures,” Science (Washington) 321(5889), 676–680 (2008).CrossRefADSGoogle Scholar
  23. 23.
    J. Maier, “Nanoionics: Ionic Charge Carriers in Small Systems,” Phys. Chem. Chem. Phys 11(17), 3011–3022 (2009).CrossRefPubMedGoogle Scholar
  24. 24.
    A. L. Despotuli and A. V. Andreeva, “Double-Layer Thin-Film Supercapacitors for Nano-Electromechanical Systems (NEMS),” in Proceedings of the IARP International Workshop “Microrobots, Micromachines, and Microsystems,” Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia, April 24–25, 2003 (Moscow, 2003), pp. 129–141.Google Scholar
  25. 25.
    A. L. Despotuli and A. V. Andreeva, “Design and Development of New Types of Thin-Film Solid-Electrolyte Supercapacitors for Microsystem Technologies and Micro(nano)electronics (Part 1),” Mikrosist. Tekh., No. 11, 2–10 (2003).Google Scholar
  26. 26.
    A. L. Despotuli and A. V. Andreeva, “Design and Development of New Types of Thin-Film Solid-Electrolyte Supercapacitors for Microsystem Technologies and Micro(nano)electronics (Part 2),” Mikrosist. Tekh., No. 12, 2–6 (2003).Google Scholar
  27. 27.
    P. Keblinski, J. Eggebrecht, D. Wolf, and S. R. Phillpot, “Molecular Dynamics Study of Screening in Ionic Fluids,” J. Chem. Phys. 113(1), 282–291 (2000).CrossRefADSGoogle Scholar
  28. 28.
    A. V. Andreeva, “The Interface Symmetry and Heteroephitaxy,” Mater. Sci. Forum 69, 111–115 (1991).CrossRefGoogle Scholar
  29. 29.
    A. V. Andreeva, “Processes of Structural Self-Organization Initiated in Nanosystems by the Formation of Low-Energy Intercrystallite Boundaries,” in Proceedings of the Fourth International Interdisciplinary Symposium “Fractals and Applied Synergetics (FaAS-2005),” Baikov Institute for Metallurgy and Materials Science of the Russian Academy of Sciences (IMET RAN), Moscow, Russia, November 14–17, 2005 (Moscow, 2005), p. 30.Google Scholar
  30. 30.
    A. V. Andreeva, “Interface Design and Processes of Self-Organization in Nanosystems,” Guangdong Youse Jinshu Xuebao (Journal of Guangdong Non-Ferrous Metals) 2–3, 244–250 (2005).Google Scholar
  31. 31.
    A. L. Despotuli, H. V. Lichkova, H. A. Minenkova, and S. V. Nosenko, “Preparation and Certain Properties of CsAg4Br3 − xI2 + x and RbAg4I5 Thin-Film Solid Electrolytes,” Elektrokhimiya 26(11), 1524–1528 (1990) [Sov. Electrochem. 26 (11), 1364–1367 (1990)].Google Scholar
  32. 32.
    A. L. Despotuli, V. N. Zagorodnev, N. V. Lichkova, and N. A. Minenkova, “New High-Conductive CsAg4Br3 − xI2 + x (0.25 < x < 1) Solid Electrolytes,” Fiz. Tverd. Tela (Leningrad) 31(9), 242–244 (1989) [Sov. Phys. Solid State 31 (9), 1613–1614 (1989)].Google Scholar
  33. 33.
    A. L. Despotuli, A. V. Andreeva, and A. Rambabu, “Nano-Ionic Hybrid Power Sources for Microsystem Technologies and Wireless Microsensor Networks,” in Abstracts of the Third International Conference on Materials for Advanced Technologies (ICMAT-2005), Symposium P: Materials for Rechargeable Batteries, hydrogen Storage, and Fuel Cells, Suntes Singapore International Convention and Exhibition Centre (SICEC), Singapore, July 3–8, 2005 (World Scientific, Singapore, 2005), p. 7.Google Scholar
  34. 34.
    A. L. Despotuli, A. V. Andreeva, and V. Rambabu, “Nanoionics-The Basis for the Design and Development of New Instruments for Microsystem Technologies,” in Nanosystems and Microsystems: Progress from Research to Developments, Ed. by P. P. Mal’tsev (Tekhnosfera, Moscow, 2005), pp. 72–85 [in Russian].Google Scholar
  35. 35.
    A. L. Despotuli, A. V. Andreeva, V. V. Vedeneev, V. V. Aristov, and P. P. Mal’tsev, “High-Capacitance Capacitors for Ultracompact Surface Assembling,” Nano- Mikrosist. Tekh., No. 3, 30–37 (2006).Google Scholar
  36. 36.
    A. L. Despotuli and A. V. Andreeva, “Supercapacitors for Electronics (Part 1),” Sovrem. Elektron., No. 5, 10–14 (2006).Google Scholar
  37. 37.
    A. L. Despotuli and A. V. Andreeva, “Supercapacitors for Electronics (Part 2),” Sovrem. Elektron., No. 6, 46–51 (2006).Google Scholar
  38. 38.
    A. L. Despotuli, A. V. Andreeva, and V. V. Aristov, “High-Capacitance Capacitors for Nanoelectronics,” Nano- Mikrosist. Tekh., No. 11, 38–46 (2007).Google Scholar
  39. 39.
    A. L. Despotuli and A. V. Andreeva, “Perspectives for the Development of Deep-Sub-Voltage Nanoelectronics and Related Technologies in Russia,” Nano- Mikrosist. Tekh., No. 10, 2–11 (2008).Google Scholar
  40. 40.
    A. L. Despotuli and A. V. Andreeva, “Perspectives for the Development of Deep-Sub-Voltage Nanoelectronics and Related Technologies in Russia,” Integral, No. 1, 6–7 (2008).Google Scholar
  41. 41.
    A. L. Despotuli and A. V. Andreeva, “Perspectives for the Development of Deep-Sub-Voltage Nanoelectronics and Related Technologies in Russia: Nanoionics-Based Supercapacitors,” Integral, No. 2, 16–18 (2008).Google Scholar
  42. 42.
    A. L. Despotuli, “Deep-Sub-Voltage Nanoelectronics: New Results 2007–2008,” Integral, No. 4, 10–11 (2008).Google Scholar
  43. 43.
    A. L. Despotuli and A. V. Andreeva, “Nanoionics-Based Instruments in Deep-Sub-Voltage Nanoelectronics,” Nanoindustriya, No. 5, 12–16 (2008).Google Scholar
  44. 44.
    A. L. Despotuli and A. V. Andreeva, “A Short Review on Deer-Sub-Voltage Nanoelectronics and Related Technologies,” Int. J. Nanosci. 8(4), 389–402 (2009).CrossRefGoogle Scholar
  45. 45.
    M. S. Majdoub, R. Maranganti, and P. Sharma, “Understanding the Origins of the Intrinsic Dead Layer Effect in Nanocapacitors,” Phys. Rev. B: Condens. Matter 79(11), 115 412-1–115 412-8 (2009).Google Scholar
  46. 46.
    P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. Rubloff, “Nanotubular Metal-Insulator Capacitor Arrays for Energy Storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).CrossRefADSPubMedGoogle Scholar
  47. 47.
    Ju. H. Krieger and S. M. Spitzer, “Non-Traditional, Non-Volatile Memory Based on Switching and Retention Phenomena in Polymeric Thin Films,” in The IEEE Proceedings of the Fifth Annual Non-Volatile Memory Technology Symposium (NVMTS-2004), Orlando, Florida, United States, November 15–17, 2004 (Orlando, 2004), pp. 121–124.Google Scholar
  48. 48.
    T. Berzina, A. Smerieri, M. Bernabò, A. Pucci, G. Ruggeri, V. Erokhin, and M. P. Fontana, “Optimization of an Organic Memristor as an Adaptive Memory Element,” J. Appl. Phys. 105(12), 124 515-1–124 515-5 (2009).CrossRefGoogle Scholar
  49. 49.
    D. B. Strukov, J. L. Borghetti, and R. Williams, “Coupled Ionic and Electronic Transport Model of Thin-Film Semiconductor Memristive Behavior,” Small 5(9), 1058–1063 (2009).CrossRefPubMedGoogle Scholar
  50. 50.
    V. V. Zhirnov and R. K. Cavin, “Emerging Research Nanoelectronic Devices: The Choice of Information Carrier,” ECS Trans. 11(6), 17–28 (2007).CrossRefGoogle Scholar
  51. 51.
    S. Krohns, P. Lunkenheimer, Ch. Kant, A. V. Pronin, H. B. Brom, A. A. Nugroho, M. Diantoro, and A. Loidl, “Colossal Dielectric Constant up to Gigahertz at Room Temperature,” Appl. Phys. Lett. 94(12), 122 903-1–122 903-3 (2009).CrossRefGoogle Scholar
  52. 52.
    K. R. S. Preethi Meher and K. B. R. Varma, “Colossal Dielectric Behavior of Semiconducting Sr2TiMnO6 Ceramics,” J. Appl. Phys. 105(3), 034 113-1–034 113-8 (2009).CrossRefGoogle Scholar
  53. 53.
    M. Kiguchi, G. Yoshikawa, S. Ikeda, and K. Saiki, “Electronic Properties of Metal-Induced Gap States Formed at Alkali-Halide/Metal Interfaces,” Phys. Rev. B: Condens. Matter 71(15), 153 401-1–153 401-4 (2005).Google Scholar
  54. 54.
    A. Rakitin and M. Kobayashi, “Effect of Lattice Potential on the Dynamics of Liquid-Like Ionic Transport in Solid Electrolytes,” Phys. Rev. B: Condens. Matter 49(17), 11 789–11 793 (1994).Google Scholar
  55. 55.
    G. I. Ostapenko, “Galvanostatic Investigation of the Electron Transport at the RbCu4Cl3I2 Contact,” Izv. Samar. Nauchn. Tsentra 2(1), 124–127 (2000).Google Scholar
  56. 56.
    M. Stengel, D. Vanderbilt, and N. A. Spaldin, “Enhancement of Ferroelectricity at Metal-Oxide Interfaces,” Nat. Mater. 8(5), 392–397 (2009).CrossRefADSPubMedGoogle Scholar
  57. 57.
    O. Sharia, K. Tse, J. Robertson, and A. A. Demkov, “Extended Frenkel Pairs and Band Alignment at Metal-Oxide Interfaces,” Phys. Rev. B: Condens. Matter 79(12), 125 305-1–125 305-8 (2009).Google Scholar
  58. 58.
    T. Kopp and J. Mannhart, “Calculation of the Capacitances of Conductors-Perspectives for the Optimization of Electronic Devices,” arXiv:0902.4673v2condmat.mtrl-sci.2009.Google Scholar
  59. 59.
  60. 60.
    J. J. Welser, G. I. Bourianoff, V. V. Zhirnov, and R. K. Cavin, “The Quest for Next Information Processing Technology,” J. Nanopart. Res. 10(1), 1–10 (2008).CrossRefGoogle Scholar
  61. 61.
    P. J. Burke, “An RF Circuit Model for Carbon Nanotubes,” IEEE Trans. Nanotechnol. 2(1), 55–58 (2003).CrossRefADSGoogle Scholar
  62. 62.
    V. Slyusar, “Nanoantennas: Approaches and Perspectives,” Elektronika, No. 2, 58–65 (2009).Google Scholar
  63. 63.
    A. L. Despotuli, “Nanoionics (Nanoelionics)-02,” Request for the performance of the project of the Russian Foundation for Basic Research (RFFI no. 96-02-17334-a).Google Scholar
  64. 64.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. L. Despotuli
    • 1
  • A. V. Andreeva
    • 1
  1. 1.Institution of the Russian Academy of Sciences Institute of Microelectronics Technology RASChernogolovka, Moscow oblastRussia

Personalised recommendations