Skip to main content
Log in

Receptor properties of nanoporous structures based on β-cyclodextrin

  • Articles
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A columnar modification of β-cyclodextrin (β-CDcol) has been synthesized using self-assembly and self-organization processes. It is shown that the obtained macrocycle assemblies in the solid state are highly ordered structures with through cylindrical pores with an average diameter of ∼0.7 nm and a length of about 60 nm. These structures can be of interest as a new type of macroreceptors for the inclusion of molecules with diameters not exceeding 0.7 nm belonging to various chemical classes. The abilities of the common cage structure of β-CD and the β-CDcol modification to bind low-molecular-weight volatile organic compounds have been compared. The dependence of the composition, structure, and thermal stability of the inclusion complexes on the ligand nature and geometry is analyzed. The absence of any specificity in the adsorption of ligands on β-CDcol and the possibility of using this structure as a stable nanocontainter for the storage of volatile compounds is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Znagaki, Y. Fukushima, and K. Kuzoda, “Synthesis of Highly Ordered Mesoporous Materials from a Layered Polisilicate,” Chem. Soc., Chem. Commun., No. 8, 680 (1993).

  2. I. K. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials,” Angew. Chem., Int. Ed. 38, 56 (1999).

    Article  CAS  Google Scholar 

  3. V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, V. N. Solomonov, A. I. Konovalov, P. Lhotak, and I. Stibor, “Nonlinear Structure-Affinity Relationships for Vapor Guest Inclusion by Solid Calixarenes,” J. Phys. Chem. B 106, 5845 (2002).

    Article  CAS  Google Scholar 

  4. V. V. Gorbachuk, L. S. Savel’eva, M. A. Ziganshin, I. S. Antipin, and V. A. Sidorov, “Molecular Recognition of Organic Guest Vapor by Solid Adamantylcalix[4]arene,” Izv. Akad. Nauk, Ser. Khim., No. 1, 60 (2004).

  5. J. L. Atwood, L. J. Barbour, and A. Jerga, “Storage of Methane and by Interstitial van der Confinement,” Science (Washington) 296, 2367 (2002).

    Article  CAS  ADS  Google Scholar 

  6. P. K. Thallapally, T. B. Wirsing, L. J. Barbour, and J. L. Atwood, “Crystal Engineering of Nonporous Organic Solids for Methane Sorption,” Chem. Commun. (Cambridge), No. 35, 4420 (2005).

  7. A. Collet, “Cyclotriveratrylenes and Cryptophanes,” Tetrahedron 43, 5725 (1987).

    Article  CAS  Google Scholar 

  8. S. Noro, S. Kitagawa, M. Kondo, and K. Seki, “A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n],” Angew. Chem., Int. Ed. 39, 2081–2084 (2000).

    Article  Google Scholar 

  9. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, and O. M. Yaghi, “Systematic Design of Pore and Functionality in Isoreticular MOFs and Their Application Methane Storage,” Science (Washington) 295, 469 (2002).

    Article  CAS  ADS  Google Scholar 

  10. L. Dobrzanska, G. O. Lloyd, H. G. Raubenheimer, and L. J. Barbour, “A Discrete Metallocyclic Complex That Retains Its Solvent-Templated Channel Structure on Guest Renoval to Yield a Porous, Gas Sorbing Material,” J. Am. Chem. Soc. 127, 13 134 (2005).

    Article  CAS  Google Scholar 

  11. T. W. Ebbesen, “Carbon Nanotubes,” Phys. Today 49, 26 (1996).

    Article  CAS  Google Scholar 

  12. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, B. S. Bethune, and M. J. Heben, “Storage of Hydrogen in Single-Walled Carbon Nanotubes,” Nature (London) 386(6623), 377 (1997).

    Article  CAS  ADS  Google Scholar 

  13. C. F. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, “Hydron Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science (Washington) 286, 1127 (1999).

    Article  CAS  Google Scholar 

  14. S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, R. Kaindl, E. Mersdorf, and B. F. Myasoedov, “Highly Porous Uranyl Selenate Nanotubules,” J. Am. Chem. Soc. 127, 1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, R. Kaindl, E. Mersdorf, and B. F. Myasoedov, “Nanoscale Tubules in Uranyl Selenates,” Angew. Chem., Int. Ed. 44, 1134 (2005).

    Article  CAS  Google Scholar 

  16. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selected Detection of Biological and Chemical Species,” Science (Washington) 293, 1289 (2001).

    Article  CAS  ADS  Google Scholar 

  17. G. E. I. Douberly, S. Pan, D. Walters, and H. Matsui, “Fabrication of Protein Tubules: Immobilization of Proteins on Peptide Tubules,” J. Phys. Chem. B 105(32), 7612 (2001).

    Article  CAS  Google Scholar 

  18. M. Shim, N. W. S. Kam, R. I. Chen, Y. V. Li, and H. I. Dsi, “Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition,” Nano Lett. 2(4), 285 (2002).

    Article  CAS  ADS  Google Scholar 

  19. I. N. Topchieva, I. G. Panova, E. I. Popova, E. V. Matukhina, and V. I. Gerasimov, “Supramolecular Dissociation of Polymeric Inclusion Complexes Containing Cyclodextrins as a Method of Preparing New Columnar Structures,” Dokl. Akad. Nauk 380(1–3), 66 (2001) [Dokl. Chem. 380 (1–3), 242 (2001)].

    CAS  Google Scholar 

  20. I. N. Topchieva, I. G. Panova, E. I. Popova, E. V. Matukhina, T. E. Grokhovskaya, V. V. Spiridonov, and V. I. Gerasimov, “Polymer Inclusion Complexes in the Synthesis of Columnar Structures Based on Cyclodextrins,” Vysokomol. Soedin., Ser. A 44(4), 588 (2002) [Polym. Sci., Ser. A 44 (4), 352 (2002)].

    CAS  Google Scholar 

  21. C. C. Rusa, T. A. Bullions, J. Fox, F. E. Porbeni, X. Wang, and A. E. Tonelli, “Inclusion Compound Formation with a New Columnar Cyclodextrin Host,” Langmur 18(25), 10 016 (2002).

    Article  CAS  Google Scholar 

  22. I. G. Panova, E. V. Matukhina, V. I. Gerasimov, and I. N. Topchieva, “Non-Covalent Columnar Cyclodextrin-Based Structures,” Kolloidn. Zh. 68(1), 72 (2006) [Colloid J. 68 (1), 66 (2006)].

    Google Scholar 

  23. I. G. Panova, E. V. Matuchina, and I. N. Topchieva, “The Template Co-Crystallization of β-Cyclodextrin with Polymeric Inclusion Complex,” Polym. Bull. (Heidelberg) 58 (2007).

  24. J. Szeitly, Cyclodextrins and Their Inclusion Complexes (Academiai Kiado, Budapest, 1982).

    Google Scholar 

  25. W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith, and T. Takaha, “Structures of the Common Cyclodextrins and Their Larger Analogues,” Chem. Rev. (Washington) 98, 1787 (1998).

    CAS  Google Scholar 

  26. V. V. Gorbatchuk, M. A. Ziganshin, L. S. Savelyeva, N. A. Mironov, and W. D. Habicher, “Cooperative Hydration Effect on the Binding of Organic Vapors by Cross-Linked Polymers and Beta-Cyclodextrin,” Macromol. Symp. 210, 263 (2004).

    Article  CAS  Google Scholar 

  27. L. S. Savelyeva, M. A. Ziganshin, V. V. Gorbatchuk, and B. N. Solomonov, “Hydration Effect on the Clathrate Formation with Solid Beta-Cyclodextrin,” in Book of Abstracts of the Third International Symposium “Molecular Design and Synthesis of Supramolecular Architectures,” Kazan, Russia, 2004 (Kazan, 2004), p. 170.

  28. T. Kida, T. Nakano, Y. Fujino, C. Matsumura, K. Miyawaki, E. Kato, and M. Akashi, “Complete Removal of Chlorinated Aromatic Compounds from Oils by Channel-Type γ-Cyclodextrin Assembly,” Anal. Chem. 80, 317 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. I. N. Topchieva, I. G. Panova, B. I. Kurganov, V. V. Spiridonov, S. K. Filippov, and A. V. Lezov, “Noncovalent Columnar Structures Based on β-Cyclodextrin,” Kolloidn. Zh. 70(3), 392 (2008) [Colloid J. 70 (3), 356 (2008)].

    Google Scholar 

  30. I. N. Topchieva, I. G. Panova, V. V. Spiridonov, E. V. Matukhina, and B. I. Kurganov, “Aggregation of Inclusion Complexes Formed by Noncovalent Columnar Structures Based on α- and γ-Cyclodextrins and Poly(alkylene glycols),” Kolloidn. Zh. 71(4), 544 (2009) [Colloid J. 71 (4), 550 (2009)].

    Google Scholar 

  31. I. G. Panova, E. V. Matukhina, E. I. Popova, V. I. Gerasimov, and I. N. Topchieva, “Structure of Inclusion Complexes of β-Cyclodextrin with Poly(propylene oxide),” Vysokomol. Soedin., Ser. A 43(7), 1228 (2001) [Polym. Sci., Ser. A 43 (7), 771 (2001)].

    CAS  Google Scholar 

  32. E. I. Popova, I. N. Topchieva, E. V. Zhavoronkova, I.G. Panova, E. V. Matukhina, and V. I. Gerasimov, “Two Kinds of Inclusion Complexes Based on Poly(propylene oxide) and β-Cyclodextrin,” Vysokomol. Soedin., Ser. A 44(1), 72 (2002) [Polym. Sci., Ser. B 44 (1), 72 (2002)].

    Google Scholar 

  33. W. Saenger, “Structural Aspects of Cyclodextrins and Their Inclusion Complexes,” in Inclusion Compounds, Ed. by J. L. Atwood, J. E. Davies, and D. D. MacNicols (Academic, London, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Panova.

Additional information

Original Russian Text © I.G. Panova, E.K. Zhukova, E.V. Matukhina, I.N. Topchieva, 2010, published in Rossiiskie nanotekhnologii, 2010, Vol. 5, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panova, I.G., Zhukova, E.K., Matukhina, E.V. et al. Receptor properties of nanoporous structures based on β-cyclodextrin. Nanotechnol Russia 5, 304–312 (2010). https://doi.org/10.1134/S1995078010050046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078010050046

Keywords

Navigation