Nanotechnologies in Russia

, Volume 5, Issue 5–6, pp 304–312 | Cite as

Receptor properties of nanoporous structures based on β-cyclodextrin

  • I. G. Panova
  • E. K. Zhukova
  • E. V. Matukhina
  • I. N. Topchieva


A columnar modification of β-cyclodextrin (β-CDcol) has been synthesized using self-assembly and self-organization processes. It is shown that the obtained macrocycle assemblies in the solid state are highly ordered structures with through cylindrical pores with an average diameter of ∼0.7 nm and a length of about 60 nm. These structures can be of interest as a new type of macroreceptors for the inclusion of molecules with diameters not exceeding 0.7 nm belonging to various chemical classes. The abilities of the common cage structure of β-CD and the β-CDcol modification to bind low-molecular-weight volatile organic compounds have been compared. The dependence of the composition, structure, and thermal stability of the inclusion complexes on the ligand nature and geometry is analyzed. The absence of any specificity in the adsorption of ligands on β-CDcol and the possibility of using this structure as a stable nanocontainter for the storage of volatile compounds is demonstrated.


Cyclodextrin Inclusion Complex Macrocycle Guest Molecule Columnar Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Znagaki, Y. Fukushima, and K. Kuzoda, “Synthesis of Highly Ordered Mesoporous Materials from a Layered Polisilicate,” Chem. Soc., Chem. Commun., No. 8, 680 (1993).Google Scholar
  2. 2.
    I. K. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials,” Angew. Chem., Int. Ed. 38, 56 (1999).CrossRefGoogle Scholar
  3. 3.
    V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, V. N. Solomonov, A. I. Konovalov, P. Lhotak, and I. Stibor, “Nonlinear Structure-Affinity Relationships for Vapor Guest Inclusion by Solid Calixarenes,” J. Phys. Chem. B 106, 5845 (2002).CrossRefGoogle Scholar
  4. 4.
    V. V. Gorbachuk, L. S. Savel’eva, M. A. Ziganshin, I. S. Antipin, and V. A. Sidorov, “Molecular Recognition of Organic Guest Vapor by Solid Adamantylcalix[4]arene,” Izv. Akad. Nauk, Ser. Khim., No. 1, 60 (2004).Google Scholar
  5. 5.
    J. L. Atwood, L. J. Barbour, and A. Jerga, “Storage of Methane and by Interstitial van der Confinement,” Science (Washington) 296, 2367 (2002).CrossRefADSGoogle Scholar
  6. 6.
    P. K. Thallapally, T. B. Wirsing, L. J. Barbour, and J. L. Atwood, “Crystal Engineering of Nonporous Organic Solids for Methane Sorption,” Chem. Commun. (Cambridge), No. 35, 4420 (2005).Google Scholar
  7. 7.
    A. Collet, “Cyclotriveratrylenes and Cryptophanes,” Tetrahedron 43, 5725 (1987).CrossRefGoogle Scholar
  8. 8.
    S. Noro, S. Kitagawa, M. Kondo, and K. Seki, “A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n],” Angew. Chem., Int. Ed. 39, 2081–2084 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, and O. M. Yaghi, “Systematic Design of Pore and Functionality in Isoreticular MOFs and Their Application Methane Storage,” Science (Washington) 295, 469 (2002).CrossRefADSGoogle Scholar
  10. 10.
    L. Dobrzanska, G. O. Lloyd, H. G. Raubenheimer, and L. J. Barbour, “A Discrete Metallocyclic Complex That Retains Its Solvent-Templated Channel Structure on Guest Renoval to Yield a Porous, Gas Sorbing Material,” J. Am. Chem. Soc. 127, 13 134 (2005).CrossRefGoogle Scholar
  11. 11.
    T. W. Ebbesen, “Carbon Nanotubes,” Phys. Today 49, 26 (1996).CrossRefGoogle Scholar
  12. 12.
    A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, B. S. Bethune, and M. J. Heben, “Storage of Hydrogen in Single-Walled Carbon Nanotubes,” Nature (London) 386(6623), 377 (1997).CrossRefADSGoogle Scholar
  13. 13.
    C. F. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, “Hydron Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science (Washington) 286, 1127 (1999).CrossRefGoogle Scholar
  14. 14.
    S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, R. Kaindl, E. Mersdorf, and B. F. Myasoedov, “Highly Porous Uranyl Selenate Nanotubules,” J. Am. Chem. Soc. 127, 1072 (2005).CrossRefPubMedGoogle Scholar
  15. 15.
    S. V. Krivovichev, V. Kahlenberg, I. G. Tananaev, R. Kaindl, E. Mersdorf, and B. F. Myasoedov, “Nanoscale Tubules in Uranyl Selenates,” Angew. Chem., Int. Ed. 44, 1134 (2005).CrossRefGoogle Scholar
  16. 16.
    Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selected Detection of Biological and Chemical Species,” Science (Washington) 293, 1289 (2001).CrossRefADSGoogle Scholar
  17. 17.
    G. E. I. Douberly, S. Pan, D. Walters, and H. Matsui, “Fabrication of Protein Tubules: Immobilization of Proteins on Peptide Tubules,” J. Phys. Chem. B 105(32), 7612 (2001).CrossRefGoogle Scholar
  18. 18.
    M. Shim, N. W. S. Kam, R. I. Chen, Y. V. Li, and H. I. Dsi, “Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition,” Nano Lett. 2(4), 285 (2002).CrossRefADSGoogle Scholar
  19. 19.
    I. N. Topchieva, I. G. Panova, E. I. Popova, E. V. Matukhina, and V. I. Gerasimov, “Supramolecular Dissociation of Polymeric Inclusion Complexes Containing Cyclodextrins as a Method of Preparing New Columnar Structures,” Dokl. Akad. Nauk 380(1–3), 66 (2001) [Dokl. Chem. 380 (1–3), 242 (2001)].Google Scholar
  20. 20.
    I. N. Topchieva, I. G. Panova, E. I. Popova, E. V. Matukhina, T. E. Grokhovskaya, V. V. Spiridonov, and V. I. Gerasimov, “Polymer Inclusion Complexes in the Synthesis of Columnar Structures Based on Cyclodextrins,” Vysokomol. Soedin., Ser. A 44(4), 588 (2002) [Polym. Sci., Ser. A 44 (4), 352 (2002)].Google Scholar
  21. 21.
    C. C. Rusa, T. A. Bullions, J. Fox, F. E. Porbeni, X. Wang, and A. E. Tonelli, “Inclusion Compound Formation with a New Columnar Cyclodextrin Host,” Langmur 18(25), 10 016 (2002).CrossRefGoogle Scholar
  22. 22.
    I. G. Panova, E. V. Matukhina, V. I. Gerasimov, and I. N. Topchieva, “Non-Covalent Columnar Cyclodextrin-Based Structures,” Kolloidn. Zh. 68(1), 72 (2006) [Colloid J. 68 (1), 66 (2006)].Google Scholar
  23. 23.
    I. G. Panova, E. V. Matuchina, and I. N. Topchieva, “The Template Co-Crystallization of β-Cyclodextrin with Polymeric Inclusion Complex,” Polym. Bull. (Heidelberg) 58 (2007).Google Scholar
  24. 24.
    J. Szeitly, Cyclodextrins and Their Inclusion Complexes (Academiai Kiado, Budapest, 1982).Google Scholar
  25. 25.
    W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith, and T. Takaha, “Structures of the Common Cyclodextrins and Their Larger Analogues,” Chem. Rev. (Washington) 98, 1787 (1998).Google Scholar
  26. 26.
    V. V. Gorbatchuk, M. A. Ziganshin, L. S. Savelyeva, N. A. Mironov, and W. D. Habicher, “Cooperative Hydration Effect on the Binding of Organic Vapors by Cross-Linked Polymers and Beta-Cyclodextrin,” Macromol. Symp. 210, 263 (2004).CrossRefGoogle Scholar
  27. 27.
    L. S. Savelyeva, M. A. Ziganshin, V. V. Gorbatchuk, and B. N. Solomonov, “Hydration Effect on the Clathrate Formation with Solid Beta-Cyclodextrin,” in Book of Abstracts of the Third International Symposium “Molecular Design and Synthesis of Supramolecular Architectures,” Kazan, Russia, 2004 (Kazan, 2004), p. 170.Google Scholar
  28. 28.
    T. Kida, T. Nakano, Y. Fujino, C. Matsumura, K. Miyawaki, E. Kato, and M. Akashi, “Complete Removal of Chlorinated Aromatic Compounds from Oils by Channel-Type γ-Cyclodextrin Assembly,” Anal. Chem. 80, 317 (2008).CrossRefPubMedGoogle Scholar
  29. 29.
    I. N. Topchieva, I. G. Panova, B. I. Kurganov, V. V. Spiridonov, S. K. Filippov, and A. V. Lezov, “Noncovalent Columnar Structures Based on β-Cyclodextrin,” Kolloidn. Zh. 70(3), 392 (2008) [Colloid J. 70 (3), 356 (2008)].Google Scholar
  30. 30.
    I. N. Topchieva, I. G. Panova, V. V. Spiridonov, E. V. Matukhina, and B. I. Kurganov, “Aggregation of Inclusion Complexes Formed by Noncovalent Columnar Structures Based on α- and γ-Cyclodextrins and Poly(alkylene glycols),” Kolloidn. Zh. 71(4), 544 (2009) [Colloid J. 71 (4), 550 (2009)].Google Scholar
  31. 31.
    I. G. Panova, E. V. Matukhina, E. I. Popova, V. I. Gerasimov, and I. N. Topchieva, “Structure of Inclusion Complexes of β-Cyclodextrin with Poly(propylene oxide),” Vysokomol. Soedin., Ser. A 43(7), 1228 (2001) [Polym. Sci., Ser. A 43 (7), 771 (2001)].Google Scholar
  32. 32.
    E. I. Popova, I. N. Topchieva, E. V. Zhavoronkova, I.G. Panova, E. V. Matukhina, and V. I. Gerasimov, “Two Kinds of Inclusion Complexes Based on Poly(propylene oxide) and β-Cyclodextrin,” Vysokomol. Soedin., Ser. A 44(1), 72 (2002) [Polym. Sci., Ser. B 44 (1), 72 (2002)].Google Scholar
  33. 33.
    W. Saenger, “Structural Aspects of Cyclodextrins and Their Inclusion Complexes,” in Inclusion Compounds, Ed. by J. L. Atwood, J. E. Davies, and D. D. MacNicols (Academic, London, 1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. G. Panova
    • 1
  • E. K. Zhukova
    • 1
  • E. V. Matukhina
    • 2
  • I. N. Topchieva
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations