Advertisement

Nanotechnologies in Russia

, Volume 5, Issue 5–6, pp 299–303 | Cite as

Self-assembly of ordered layers of silica microspheres on a vertical plate

  • S. P. Molchanov
  • P. V. Lebedev-Stepanov
  • S. O. Klimonskii
  • K. F. Sheberstov
  • S. Yu. Tret’yakov
  • M. V. Alfimov
Articles
  • 47 Downloads

Abstract

The features of the formation of an ordered solid phase of silica microspheres deposited from a colloidal solution onto the surface of a vertical glass plate have been studied. Mechanisms of the solid phase formation during the self-oscillating motion of the solution-substrate contact line, in which a variable-thickness structure is formed, are considered. It is established that hexagonal and cubic lattices are regularly formed in this system of particles.

Keywords

Contact Line Dark Line Vertical Band Close Packed Structure Silica Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Nagayama, “Two-Dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf., A 109, 363 (1996).CrossRefGoogle Scholar
  2. 2.
    J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett 84(13), 2997 (2000).CrossRefPubMedADSGoogle Scholar
  3. 3.
    F. Bretagnol, L. Ceriotti, A. Valsesia, T. Sasaki, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication of Functional Nano-Patterned Surfaces by a Combination of Plasma Processes and Electron-Beam Lithography,” Nanotechnology 18, 135 303 (2007).CrossRefGoogle Scholar
  4. 4.
    G. Nicolis and I. Prigogine, Self-Organization in Non-equilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977; Mir, Moscow, 1979).Google Scholar
  5. 5.
    Yu. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-Chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature (London) 414, 289 (2001).CrossRefADSGoogle Scholar
  6. 6.
    N. P. Johnson, D. W. McComb, A. Richel, B. M. Treble, and R. M. De La Rue, “Synthesis and Optical Properties of Opal and Inverse Opal Photonic Crystals,” Synth. Met. 116(1), 469 (2001).CrossRefGoogle Scholar
  7. 7.
    V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Yu. A. Vlasov, “Optical Spectroscopy of Opal Matrices with CdS Embedded in Its Pores: Quantum Confinement and Photonic Band Gap Effect,” Nuovo Cimento Soc. Ital. Fis., D 17, 1349 (1995).CrossRefADSGoogle Scholar
  8. 8.
    C. Lopez, “Materials Aspects of Photonic Crystals,” Adv. Mater. (Weinheim) 15, 1679 (2003).CrossRefGoogle Scholar
  9. 9.
    A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12, 1303 (1996); P. Jiang, J. F. Bertone, K. S. Hwang, and V. Colvin, “Single-Crystal Colloidal Multilayers of Controlled Thickness,” Chem. Mater. 11, 2132 (1999).CrossRefGoogle Scholar
  10. 10.
    W. Stöer, A. Fink, and E. J. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
  11. 11.
    P. G. De Gennes, “Wetting: Statics and Dynamics,” Rev. Mod. Phys. 57, 827 (1985) [Usp. Fiz. Nauk 151 (4), 619 (1987)].CrossRefADSGoogle Scholar
  12. 12.
    D. V. Kalinin, V. V. Serdobintseva, A. I. Plekhanov, and N. V. Sobolev, “Mechanism of the Formation of Regular Structures of Noble Opal Films on the Surface of Solid Bodies,” Dokl. Akad. Nauk 402(2), 227 (2005) [Dokl. Earth Sci. 402 (4), 577 (2005)].Google Scholar
  13. 13.
    J. Li and Y. Han, “Optical Intensity Gradient by Colloidal Photonic Crystals with a Graded Thickness Distribution,” Langmuir 22, 1885 (2006).CrossRefPubMedGoogle Scholar
  14. 14.
    W. Pan, A. Kolomeisky, and P. Vekilov, “Nucleation of Ordered Solid Phases of Proteins via a Disordered High-Density State: Phenomenological Approach,” J. Chem. Phys. 122, 174 905 (2005).Google Scholar
  15. 15.
    M. V. Alfimov, A. A. Shtykova, and V. F. Razumov, “Photo- and Thermoinitiated Formation of J and H Aggregates in Amorphous Dispersions of a Carbocyanine Dye,” Khim. Vys. Energ. 40(1), 1 (2006) [High Energy Chem. 40 (1), 18 (2006)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. P. Molchanov
    • 1
  • P. V. Lebedev-Stepanov
    • 1
  • S. O. Klimonskii
    • 1
  • K. F. Sheberstov
    • 1
  • S. Yu. Tret’yakov
    • 1
  • M. V. Alfimov
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations