Nanotechnologies in Russia

, Volume 5, Issue 3–4, pp 214–222 | Cite as

Magnetic transitions in one- and two-dimensional nanostructures

  • I. P. Suzdalev
  • Yu. V. Maksimov
  • N. N. Kolchenko
  • S. V. Novichikhin
  • V. K. Imshennik
  • V. V. Matveev
  • B. R. Shub
  • A. A. Eliseev
  • M. A. Kharlamova
  • A. V. Lukashin
  • Yu. D. Tret’yakov
  • V. M. Smirnov
  • E. A. Zemtsova
  • S. O. Kirichenko
Articles
  • 38 Downloads

Abstract

One-dimensional nanostructures based on single-layer carbon nanotubes (CNTs) with FeBr2 chains and two-dimensional nanostructures with Fe-O-Fe layers deposited on the surface of silica gel by molecular layering have been synthesized. An Mössbauer spectroscopy examination has shown that a magnetic structure with T C = 21 K and B in = 29.8 ± 0.5 T is formed in nanotubes with FeBr2 · 2H2O at T = 15 K. In the case of the Fe-O-Fe layers, the surface of silica gel has a nonmagnetic monolayer along with α-Fe2O3 nanoclusters with B in(1) = 48.5 ± 0.5 T and B in(2) = 46.4 ± 0.5 T at T = 15 K and the temperature T C = 210 K. The variation in magnetization with temperature is calculated using three models of phase transitions, namely, the model of critical indices, the two-dimensional Ising model (the Onsager formula), and the three-dimensional Heisenberg model. The experimental data are fitted best by the model of critical indices with the critical parameters α = 0.22 and 0.18 for 1D and 2D structures, respectively, demonstrating that these nanosystems approach two-dimensional structures (α = 0.15).

Keywords

Magnetic Transition Magnetic Phase Transition Heisenberg Model Critical Index Quadrupole Doublet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kusov, J. E. Morries, C. Radehaus, and A. Heilmann, J. Appl. Phys. 94, 6988 (2003).CrossRefADSGoogle Scholar
  2. 2.
    R. C. Hayward, D. A. Saville, and I. A. Askay, Nature (London) 404, 56 (2000).CrossRefADSGoogle Scholar
  3. 3.
    A. Biffis, N. Arlandi, and B. Corain, Adv. Mater. (Weinheim) 15, 1551 (2003).CrossRefGoogle Scholar
  4. 4.
    M.-C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    M. Gonugunta, A. Sharma, and S. A. Subramanian, Macromolecules 39, 3365 (2006).CrossRefADSGoogle Scholar
  6. 6.
    M. V. Lavrienko, M. M. Ovchinnikov, S. D. Khizhnyak, and P. M. Pakhomov, Fiz.-Khim. Polim. (Tver), No. 9, 125 (2003).Google Scholar
  7. 7.
    P. M. Pakhomov, M. M. Ovchinnikov, S. D. Khizhnyak, M. V. Lavrienko, W. Nierling, and M. D. Lechner, Kolloidn. Zh. 66(1), 73 (2004) [Colloid J. 66 (1), 65 (2004)].Google Scholar
  8. 8.
    M. M. Ovchinnikov, S. D. Khizhnyak, and P. M. Pakhomov, Fiz.-Khim. Polim. (Tver), No. 13, 140 (2007).Google Scholar
  9. 9.
    M. M. Ovchinnikov, S. D. Khizhnyak, and P. M. Pakhomov, Fiz.-Khim. Polim. (Tver), No. 14, 186 (2008).Google Scholar
  10. 10.
    E. V. Egorova, V. M. Spiridonova, V. S. Savel’eva, S. D. Khizhnyak, M. M. Ovchinnikov, and P. M. Pakhomov, Fiz.-Khim. Polim. (Tver), No. 14, 195 (2008).Google Scholar
  11. 11.
    P. V. Komarov, I. P. Sannikov, S. D. Khizhnyak, M. M. Ovchinnikov, and P. M. Pakhomov, Ross. Nanotekhnol. 3(11–12), 82 (2008) [Nanotechnol. Russ. 3 (11–12), 716 (2008)].Google Scholar
  12. 12.
    P. M. Pakhomov, S. D. Khizhnyak, M. M. Ovchinnikov, E. Ruehl, and M. D. Lechner, in Proceedings of the International Conference “New Polymers and Radioprotectors for Biology and Medicine,” Yerevan, Armenia, October 9–11, 2007 (Yerevan, 2007), p. 133.Google Scholar
  13. 13.
    S. Provencher, Comput. Phys. Commun. 27, 213 (1982).CrossRefADSGoogle Scholar
  14. 14.
    W. Burchard, Macromol. Symp. 101, 103 (1996).Google Scholar
  15. 15.
    S. D. Khizhnyak, W. Nierling, M. M. Ovchinnikov, M. V. Lavrienko, M. Lechner, and P. M. Pakhomov, Fiz.-Khim. Polim. (Tver), No. 9, 131 (2003).Google Scholar
  16. 16.
    A. M. Schrand, L. K. Braydich-Stolle, J. J. Schlager, L. Dai, and S. M. Hussain, Nanotechnology 19, 235 104 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash, Nanotechnology 18, 225 103 (2007).CrossRefGoogle Scholar
  18. 18.
    M. C. Brelle, J. Z. Zhang, L. Nguyen, and R. K. Mehra, J. Phys. Chem. A 103, 10 194 (1999).CrossRefGoogle Scholar
  19. 19.
    A. Zabet-Khosousi and A. Dhirani, Chem. Rev. 108, 4072 (2008).CrossRefPubMedGoogle Scholar
  20. 20.
    H.-G. Liu, F. Xiao, Ch.-W. Wang, Y.-I. Lee, Q. Xue, X. Chen, D.-J. Qian, J. Hao, and J. Jiang, Nanotechnology 19, 603 (2008).Google Scholar
  21. 21.
    J. Kielland, J. Am. Chem. Soc. 59(9), 1675 (1937).CrossRefGoogle Scholar
  22. 22.
    J.-S. Kim, J. Ind. Eng. Chem. 13(4), 418 (2007).Google Scholar
  23. 23.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, Nanotechnology 16, 2346 (2005).CrossRefADSGoogle Scholar
  24. 24.
    F. Zeng, Ch. Hou, Sh. Wu, X. Liu, Zh. Tong, and Sh. Yu, Nanotechnology 18, 605 (2007).Google Scholar
  25. 25.
    M. L. Gulrajani, D. Gupta, S. Periyasamy, and S. G. Mathu, J. Polym. Sci. 108, 614 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. P. Suzdalev
    • 1
  • Yu. V. Maksimov
    • 1
  • N. N. Kolchenko
    • 1
  • S. V. Novichikhin
    • 1
  • V. K. Imshennik
    • 1
  • V. V. Matveev
    • 1
  • B. R. Shub
    • 1
  • A. A. Eliseev
    • 2
  • M. A. Kharlamova
    • 2
  • A. V. Lukashin
    • 2
  • Yu. D. Tret’yakov
    • 2
  • V. M. Smirnov
    • 3
  • E. A. Zemtsova
    • 3
  • S. O. Kirichenko
    • 3
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Faculty of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations