Advertisement

Nanotechnologies in Russia

, Volume 5, Issue 1–2, pp 91–107 | Cite as

Investigation of combustion of HEM with aluminum nanopowders

  • G. V. Sakovich
  • V. A. Arkhipov
  • A. B. Vorozhtsov
  • S. S. Bondarchuk
  • B. V. Pevchenko
Articles

Abstract

A number of problems related to the utilization of nanosize aluminum powders as a combustible component of perspective compositions of high-energy materials is considered. The technology of producing nanopowders using the technique of conductor electrical explosion and the method of dispersed powder composition analysis are shown. The results of experimental studies of conductive and radiant ignition of model propellant compositions containing aluminum nanopowder, as well as the results of investigating the rate of stationary and non-stationary combustion of the given systems, are given. The results of an investigation of the ignition and combustion of ecologically safe propellant systems based on a dual oxidant (ammonium perchlorate and ammonium nitrate, which partially replaces it) containing aluminum nanopowder are demonstrated.

Keywords

Combustion Rate Aluminum Powder Ammonium Perchlorate Ignition Time Delay Nanosize Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. D. Morokhov, L. I. Trusov, and S. P. Chizhik, Ultradispersed Metallic Media (Atomizdat, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    A. I. Gusev, Nanocrystalline Materials: Preparation Techniques and Properties (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 1998) [in Russian].Google Scholar
  3. 3.
    G. Ya. Pavlovets, Yu. A. Mazalov, and V. Yu. Meleshko, Simulation and Problems of Controlling the Processes of Combustion of Heterogeneous Condensed Systems (The Peter the Great Military Academy of Strategic Missile Forces of the Russian Federation Ministry of Defence, Moscow, 2001) [in Russian].Google Scholar
  4. 4.
    A. E. Gash, R. L. Simpson, Y. Babushkin, A. I. Lyamkin, F. Tepper, Y. Biryukov, A. Vorozhtsov, and V. Zarko, “Nanoparticles,” in Energetic Materials: Particle Processing and Characterization, Ed. by U. Teipel (Wiley, Weinheim, 2004), Chap. 7.Google Scholar
  5. 5.
    G. Sakovich, V. Komarov, M. Lerner, N. Eisenreich, W Eckl, and F. Weller, “Inorganic Nanopowders and Products,” in Proceedings of the 37th International Annual Conference of lCT “Energetic Materials: Insensitivity, Ageing, and Monitoring,” Karlsruhe, Federal Republic of Germany, 2006 (Karlsruhe, 2006), p. 166.Google Scholar
  6. 6.
    M. Lerner, A. Vorozhtsov, G. Pavlovets, V. Meleshko, V Arkhipov, S. Bondarchuk, and L. De Luca, “Advanced Technologies of Controlled Manufacturing and the Use of Nanometals in High-Energy Materials (HEM) Formulation,” in Proceedings of the International Workshop “MEMS and Nanotechnology Integration (MNI): Applications,” Montreaux, Switzerland, May 10–11, 2004 (Montreaux, 2004), pp. 84–85.Google Scholar
  7. 7.
    M.I. Lerner and V. V. Shamanskii, “ Synthesis of Nanoparticles from a Metal Conductor by High-Power Current Pulses,” Zh. Strukt. Khim. 45(Suppl. 1), 112–115 (2004) [J. Struct. Chem. 45 (Suppl. 1), S111-S114 (2004)].Google Scholar
  8. 8.
    N. A. Fuchs, The Mechanics of Aerosols (Academy of Sciences of the Soviet Union, Moscow, 1955; Macmillan, New York, 1964).Google Scholar
  9. 9.
    V. A. Arkhipov and S. S. Bondarchuk, “Formulas Relating the Parameters of Unimodal Distributions of Particles over Sizes to the Geometrical Characteristics of the Probability Density Function,” in Mechanics of Fast Processes, Ed. by I. G. Dik (Tomsk State University, Tomsk, 1989), pp. 83–92 [in Russian].Google Scholar
  10. 10.
    V. A. Arkhipov, S. S. Bondarchuk, N. G. Kvesko, A. T. Roslyak and V. F. Trofimov, “Identification of Unimodal Size Distributions of Aerosol Particles,” Opt. Atmos. Okeana 17(5-6), 513–516 (2004) [Atmos. Oceanic Opt. 17 (5–6), 458–461 (2004)].Google Scholar
  11. 11.
    K. S. Shifrin, “On the Calculation of the Microstructure,” Tr. Gl. Geofiz. Obs. im. A. I. Voeikova, No. 109, 168–178 (1961).Google Scholar
  12. 12.
    A. N. Kolmogorov, “On the Logarithmic Normal Law of the Size Distribution of Particles upon Their Fine Grinding,” Dokl. Akad. Nauk SSSR 31(2), 99–101 (1941).Google Scholar
  13. 13.
    V. A. Arkhipov, S. S. Bondarchuk, A. G. Korotkikh, and M. I. Lerner, “Technology of Fabrication and Dispersion Characteristics of Aluminum Nanopowders,” Gorn. Zh., Special Issue: Tsvetn. Met., No. 4, 58–64 (2006).Google Scholar
  14. 14.
    Finely Dispersed Aluminum Powders ASD-1, ASD-4, and ASD-6: Technical Specifications 48-5-226-87 (OOO “SUAL-PM,” Shelekhov, Russia, 1987) [in Russian].Google Scholar
  15. 15.
    D. A. Yagodnikov and E. I. Gusachenko, “Experimental Study of the Dispersed Composition of Condensed Products of Aluminum-Particle Combustion in Air,” Fiz. Goreniya Vzryva 40(2), 33–41 (2004) [Combust., Explos. ShockWaves 40 (2), 154–162 (2004)].Google Scholar
  16. 16.
    D. A. Yagodnikov, A. A. Eliseev, and V. A. Govorin, in Proceedings of the Third International School— Workshop on Intra-Chamber Processes, Combustion, and Gas-Dynamics of Dispersed Systems, St. Petersburg, Russia, 2000 (St. Petersburg, 2000), p. 334.Google Scholar
  17. 17.
    V. G. Ivanov and O. V. Gavrilyuk, “Specific Features of the Oxidation and Self-Ignition of Electroexplosive Ultradispersed Metal Powders in Air,” Fiz. Goreniya Vzryva 35(6), 53–60 (1999) [Combust., Explos. Shock Waves 35 (6), 648–655 (1999)].Google Scholar
  18. 18.
    L. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, S. Sedoi, and V. A. Babuk, “Burning of Nano-Aluminized Composite Rocket Propellants,” Fiz. Goreniya Vzryva 41(6), 80–94 (2005) [Combust., Explos. ShockWaves 41 (6), 680–692 (2005)]}.Google Scholar
  19. 19.
    P. Lessard, F. Beaupre, and P. Brousseau, “Burn Rate Studies of Composite Propellants Containing Ultra-Fine Metals,” in Proceedings of the 32nd International Annual Conference of lCT “Energetic Materials: Production, Processing, and Characterization,” Karlsruhe, Germany, 2001 (Karlsruhe, 2001), pp. 88-1–88-11.Google Scholar
  20. 20.
    V. A. Babuk, V. A. Vassiliev, and V. V. Sviridov, “Formation of Condensed Combustion Products at the Burning Surface of Solid Rocket Propellant,” in Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Vol. 185: AIAA Progress in Astronautics and Aeronautics, Ed. by V. Yang, T. B. Brill, and W. Z. Ren (The American Institute of Aeronautics and Astronautics, Reston, VA, United States, 2000), pp. 749–776.Google Scholar
  21. 21.
    V. N. Vilyunov, Theory of the Ignition of Condensed Substances (Nauka, Novosibirsk, 1984), p. 189 [in Russian].Google Scholar
  22. 22.
    A. G. Korotkikh and V. T. Kuznetsov, “On the Possibility of Initiating Explosive Regime in Ignition of Heterogeneous Systems,” in Proceedings of the International Conference “Conjugate Problems of Mechanics, Computer Science, and Ecology,” Tomsk, Russia, 2002 (Tomsk State University, Tomsk, 2002), pp. 108–109.Google Scholar
  23. 23.
    V. A. Arkhipov, A. G. Korotkikh, V. T. Kuznetsov, and L. A. Savel’eva, “The Influence of the Particle Size of Metal Additives on the Combustion Rate of Composite Propellants,” Khim. Fiz. 23(9), 18–21 (2004).Google Scholar
  24. 24.
    Ecological Problems and Risks of Space-Rocket Techniques Influences on an Environment: The Handbook, Ed. by V. V. Aldushkin, S. I. Kozlov, and A. V. Petrov (ANKIL, Moscow, 2000) [in Russian].Google Scholar
  25. 25.
    T. L. De Luca, D. Tomasi, D. Signoriello, S. Levi, S. Cianfanelli, V. P. Sinditskii, V. A. Babuk, G Klyakin, and A. B. “Vbrozhtsov, “Dual-Oxidant Metallized Solid Propellants for Low-Cost Space Access,” in Proceedings of the 57th International Astronautical Congress and the Space Propulsion Symposium, Valencia, Spain, 2006 (Valencia, 2006), p. C4.Google Scholar
  26. 26.
    A. Vorozhtsov, V. Arkhipov, N. Popok, G. Klyakin, V. Babuk, V. Kuznetsov, L. Revyagin, S. Volkov, L. De Luca, and L. Galfetti, “The Ballistic Characteristics of SP Containing Nanoaluminum and Dual Oxidant (AP and Stabilized AN) 5.03.01,” in Proceedings of the European Conference for Aero-Space Sciences, Moscow, Russia, July 4–7, 2005 (Moscow, 2005).Google Scholar
  27. 27.
    W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974; Mir Moscow, 1978).Google Scholar
  28. 28.
    V. Arkhipov, S. Bondarchuk, A. Vbrozhtsov, A. Korotkikh, V. Kuznetsov, Yu. F. Ivanov, M. N. Osmonoliev, and V. S. Sedoi, “Productions of Ultra-Fine Powders and Their Use in High-Energetic Compositions,” Propellants, Explos., Pyrotech. 28(5), 319–333 (2003).Google Scholar
  29. 29.
    R. E. Sorkin, Theory of Intra-Chamber Processes in Solid-Propellant Rocket Systems (Nauka, Moscow, 1983) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. V. Sakovich
    • 1
  • V. A. Arkhipov
    • 1
  • A. B. Vorozhtsov
    • 1
  • S. S. Bondarchuk
    • 1
  • B. V. Pevchenko
    • 1
  1. 1.Institute for Problems of Chemical and Power TechnologiesRussian Academy of SciencesBiiskRussia

Personalised recommendations