Nanotechnologies in Russia

, Volume 4, Issue 7–8, pp 480–488 | Cite as

The structure and properties of polymer-nanodiamond composites on the base of block-copolymer polystyrene-polybutedien-polystyrene

  • A. N. Ozerin
  • T. S. Kurkin
  • G. G. Alkhanishvili
  • A. S. Kechek’yan
  • O. T. Gritsenko
  • N. S. Perov
  • L. A. Ozerina
  • M. A. Beshenko
  • V. Yu. Dolmatov
Experiment

Abstract

The structure and mechanical properties of polymer-nanodiamond composites based on block-copolymer polystyrene-polybutadiene-polystyrene have been studied. It is revealed that, if either the nanodiamonds produced by detonation synthesis or the nanodiamond soot are introduced into block-copolymer thermoelastoplastic, the mechanical performances of the modified polymer matrix change significantly. It is shown that the optimal content (according to the modifying effect) of the nanodiamond soot in polymer composite is about 8–10% by weight. It is found that the spatial distribution of nanodiamond particles in the polymeric matrix of thermoelastoplastic is determinative in modifying the properties of polymeric nanocomposite. Ways to use the examined polymer-nanodiamond composites are discussed. The obtained results are important for the technological development of modified large-scale polymers, high-strength adhesives, glues and molten adhesives, and impact-resistant plastics.

Keywords

Node Density Polybutadiene Deformation Curve Active Filler High Strength Adhesive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Yu. Dolmatov, M. V. Veretennikova, V. A. Marchukov, and V. G. Sushchev, Fiz. Tverd. Tela (St. Petersburg) 46(4), 596 (2004) [Phys. Solid State 46 (4), 611 (2004)].Google Scholar
  2. 2.
    V. Yu. Dolmatov, Usp. Khim. 70(7), 68 (2001) [Rus. Chem. Rev. 70 (7), 607 (2001)].Google Scholar
  3. 3.
    A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Ya. Vul’, and E. Osawa, Carbon 43(8), 172 (2005).CrossRefGoogle Scholar
  4. 4.
    I. I. Kulakova, Fiz. Tverd. Tela (St. Petersburg) 46(4), 621 (2004) [Phys. Solid State 46 (4), 636 (2004)].Google Scholar
  5. 5.
    R. Krishnamoorti and R. A. Vaia, J. Polym. Sci., Part B: Polym. Phys. 45(24), 3252 (2007).CrossRefGoogle Scholar
  6. 6.
    Thermoplastic Elastomers, Ed. by V. V. Moiseev (Khimiya, Moscow, 1985) [in Russian].Google Scholar
  7. 7.
  8. 8.
    A. N. Ozerin, T. S. Kurkin, L. A. Ozerina, and V. Yu. Dolmatov, Kristallografiya 53(1), 80 (2008) [Crystallogr. Rep. 53 (1), 60 (2008)].ADSGoogle Scholar
  9. 9.
    S. G. Tarasov, D. Ya. Tsvankin, and Yu. K. Godovskii, Vysokomol. Soedin., Ser. A. 20(7), 1534 (1978) [Polym. Sci. USSR 20 (7), 1728 (1978)].Google Scholar
  10. 10.
    R. C. Ball, M. Doi, S. F. Edwards, and M. Warner, Polymer 22, 1010 (1981).CrossRefGoogle Scholar
  11. 11.
    S. F. Edwards and Th. Vilgis, Polymer 27, 483 (1986).CrossRefGoogle Scholar
  12. 12.
    A. C. Balazs, T. Emrick, and T. P. Russell, Science (Washington) 314(5802), 1107 (2006).CrossRefADSGoogle Scholar
  13. 13.
    V. Yu. Dolmatov, Ross. Nanotekhnol. 2(7–8), 19 (2007).Google Scholar
  14. 14.
    V. Yu. Dolmatov, Usp. Khim. 76(4), 375 (2007) [Rus. Chem. Rev. 76 (4), 339 (2007)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. N. Ozerin
    • 1
  • T. S. Kurkin
    • 1
  • G. G. Alkhanishvili
    • 1
  • A. S. Kechek’yan
    • 1
  • O. T. Gritsenko
    • 1
  • N. S. Perov
    • 1
  • L. A. Ozerina
    • 1
  • M. A. Beshenko
    • 1
  • V. Yu. Dolmatov
    • 2
  1. 1.Enikolopov Institute of Synthetic Polimer MaterialsRussian Academy of ScienceMoscowRussia
  2. 2.JSC Diamond CentreSt. PetersburgRussia

Personalised recommendations