Nanotechnologies in Russia

, Volume 4, Issue 5–6, pp 253–261 | Cite as

Supramolecular complexes of tetrapyrrolic macrocycles: A basis for developing new molecular technologies

  • O. I. Koifman
  • N. Zh. Mamardashvili
Reviews

Abstract

Developing new effective means for the real-time detection of chemical and biochemical species by using sensors is one of the most significant problems in modern science. The physicochemical properties of the sensing agent used to generate the diagnostic signal are central to determining the overall performance of a chemical sensor. By choosing one or another agent, it is possible to vary the sensor selectivity, endurance, and response time in the presence of the analyzed compound in the medium. The way the initial chemical signal is transformed into an analytical one that can be directly used for a subsequent analysis is also of great importance, because it largely determines the ease of production and exploitation of the sensing device. Representatives of the tetrapyrrolic family have characteristic absorption and fluorescence spectra that can be used to transform the initial diagnostic response into an optical sensor signal. Along with this, these compounds can be also used as a source of the initial analytical signal because they are able to interact with a number of low molecular substances forming molecular complexes. This article reviews current approaches for producing supramolecular receptors based on tetrapyrrolic compounds and analyzes the prospects for their further application in the development of new molecular technologies such as luminescence molecular detectors, pH-switches, gas sensors, etc.

Keywords

Porphyrin Phthalocyanine Macrocycle Supramolecular Complex Amino Acid Ester 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. I. Koifman, N. Zh. Mamardashvili, and I. S. Antipin, Synthetic Receptors Based on Porphyrins and Their Conjugates with Calix-[4]arenes (Nauka, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    G. M. Mamardashvili, N. Zh. Mamardashvili, and O. I. Koifman, “Self-Assembling Systems Based on Porphirins,” Usp. Khim. 77(1), 60–77 (2008).Google Scholar
  3. 3.
    V. A. Kuz’mitskii, K. N. Solov’ev, and M. P. Tsvirko, Porphyrins: Spectroscopy, Electrochemistry, and Applications (Nauka, Moscow, 1987) [in Russian].Google Scholar
  4. 4.
    G. M. Mamardashvili, N. Zh. Mamardashvili, and O. I. Koifman, “Supramolecular Complexes of Porphyrins,” Usp. Khim. 74(8), 839–855 (2005).Google Scholar
  5. 5.
    N. N. Kruk, A. S. Starukhin, N. Zh. Mamardashvili, V. B. Sheinin, and Yu. B. Ivanova, “Determination of Halide Ions from Luminescence of the Diprotonated Form of Porphyrin,” Zh. Prikl. Spektrosk. 74(6), 750–755 (2007) [J. Appl. Spectrosc. 74 (6), 831–837 (2007)].Google Scholar
  6. 6.
    Yu. B. Ivanova, V. B. Sheinin, and N. Zh. Mamardashvili, “Experimental and Theoretical Investigations of the Acid-Base Properties of Mesoarylporphyrins,” in Proceedings of the XXVII Scientific Session of the Russian Seminar on the Chemistry of Porphyrin and Its Analogs, Ivanovo, Russia, 2006 (Ivanovo, 2006), p. 13.Google Scholar
  7. 7.
    V. Sheinin, Yu. Ivanova, and N. Mamardashvili, “Experimental and Theoretical Investigations of Acidity and Basicity of the meso-(1-(3-phenylene)-[16-(3-pyridyl)](O5-podand-5)porphyrin,” in Proceedings of the Fourth International Symposium on the Design and Synthesis of Supramolecular Architectures, Kazan, Russia, 2006 (Kazan, 2006), p. 147.Google Scholar
  8. 8.
    Yu. Ivanova, V. Sheinin, and N. Mamardashvili, “Experimental Investigation of Acidity of meso-Substituted Porphyrin: Supramolecular Systems in Chemistry and Biochemistry,” in Proceedings of the International School, Tuapse, Russia, 2006 (Tuapse, Russia), p. 68.Google Scholar
  9. 9.
    Yu. B. Ivanova, O. V. Toldina, V. B. Sheinin, and N. Zh. Mamardashvili, “Synthesis and Design of Tetrapyrrole Molecular Receptors for Alkali Metal Cations,” Zh. Org. Khim. 43(9), 1401–1406 (2007) [Russ. J. Org. Chem. 43 (9), 1397–1402 (2007)].Google Scholar
  10. 10.
    P. A. Gale, L. J. Twyman, C. I. Handlin, and J. L. Sessler, “A Colourimetric Calyx[4]pyrrole-4-Nitrophenolate Based Anion Sensor,” Chem. Commun. (Cambridge), No. 18, 1851–1852 (1999).Google Scholar
  11. 11.
    S.-J. Hong, J.-W. Ka, D.-H. Won, and C.-H. Lee, “Novel Synthesis of Phlorin Derivatives and Their Anion Binding properties,” Bull. Korean Chem. Soc. 24, 661–663 (2003).CrossRefGoogle Scholar
  12. 12.
    N. Zh. Mamardashvili, G. M. Mamardashvili, and J. Weiss, “Complexation of Zinc Porphyrinates with 1,4-Diazabicyclo[2.2.2]octane,” Zh. Neorg. Chem. 50(2), 258–264 (2005) [Russ. J. Inorg. Chem. 50 (2), 218–224 (2005)].Google Scholar
  13. 13.
    N. Zh. Mamardashvili and O. I. Koifman, “Synthetic Receptors Based on Porphyrins,” in Proceedings of the XXII International Chugaev Conference on the Coordination Chemistry, Chisinau, Moldova, 2005 (Chisinau, 2005), p. 17.Google Scholar
  14. 14.
    O. I. Koifman and N. Zh. Mamardashvili, “Molecular Receptors for the Specific Type of Substrates,” in Proceedings of the International Conference “Physicochemical Principles of the Newest Technologies of the XXI Century,” Moscow, Russia, 2005 (Moscow, 2005), p. 23.Google Scholar
  15. 15.
    G. M. Mamardashvili, R. S. Kumeev, and N. Zh. Mamardashvili, “Complex Formation of Dimeric Cyclophane Zinc Diphenylporphyrinates with 1,4-Diazabicyclo[2.2.2]octane and 1,4-Pyrazine,” Zh. Neorg. Chem. 51(8), 1349–1354 (2006) [Russ. J. Inorg. Chem. 51 (8), 1264–1269 (2006)].Google Scholar
  16. 16.
    N. Zh. Mamardashvili, V. V. Borovkov, and Y. Inoue, “Optically Active Supramolecular Systems Based on Porphyrins,” Usp. Khim. 75(8), 737–748 (2006).Google Scholar
  17. 17.
    R. C. Jagessar and D. H. Burns, “cis-5,10,15,20-Tetrakis[2-(Arylurea)phenyl]porphyrins: Novel Neutral Ligands for Remarkably Selective and Exceptionally Strong Chloride Anion Complexation in (CD3)2SO,” Chem. Commun. (Cambridge), No. 17, 1685–1686 (1997).Google Scholar
  18. 18.
    M. Dudic, P. Lhotak, I. Stibor, K. Lang, and P. Proskova, “Calix[4]arene-Porphyrin Conjugates as Versatile Molecular Receptor for Anions,” Org. Lett. 5, 149–152 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    Yu. B. Ivanova, V. B. Sheinin, and N. Zh. Mamardashvili, “Porphyrin Halide Ion Receptor,” Zh. Obshch. Khim. 77(8), 1380–1385 (2007) [Russ. J. Gen. Chem. 77 (8), 1458–1462 (2007)].Google Scholar
  20. 20.
    N. N. Kruk, A. S. Starukhin, N. Zh. Mamardashvili, V. B. Sheinin, and Yu. B. Ivanova, Patent Appl. No. 2 007 122 152, Russia (June 13, 2007).Google Scholar
  21. 21.
    B. R. Eggins, Chemical Sensors and Biosensors (Wiley, Chichester, 2002; Tekhnosfera, Moscow, 2005).Google Scholar
  22. 22.
    N. Zh. Mamardashvili and O. I. Koifman, “Synthesis of New Architectures on the Base of Tetrapyrrolic Macrocycles,” in Proceedings of the Fifth International Conference on Porphyrins and Phthalocyanines, Moscow, Russia, 2008 (Moscow, 2008), p. 97.Google Scholar
  23. 23.
    O. I. Koifman and N. Zh. Mamardashvili, in Collected Works: Advances in the Chemistry of Dimeric Porphyrins (Institute of Chemistry of Nonaqueous Solutions of the Russian Academy of Sciences, Ivanovo, Russia, 2006), pp. 25–37 [in Russian].Google Scholar
  24. 24.
    O. I. Koifman and N. Mamardashvili, “Design and Application of New Tetrapyrrolic Architectures,” in Proceedings of the Seminar on Organic Electronics, Bangkok, Thailand, 2006 (Bangkok, 2006), p. 3.Google Scholar
  25. 25.
    N. Mamardashvili and O. I. Koifman, “Synthesis of Tetrapyrrolic Supramolecular Architectures,” in Proceedings of the Fourth International Symposium on the Design and Synthesis of Supramolecular Architectures, Kazan, Russia, 2006 (Kazan, 2006), p. 30.Google Scholar
  26. 26.
    N. Mamardashvili, G. Mamardashvili, and O. Koifman, “Complexation of Zinc Porphyrinates with Small Organic Molecules,” in Proceedings of the Fourth International Symposium on the Design and Synthesis of Supramolecular Architectures, Kazan, Russia, 2006 (Kazan, 2006), p. 58.Google Scholar
  27. 27.
    S. V. Zajceva, S. A. Zdanovich, and O. I. Koifman, “Intermolecular Interaction of Sterically Stressed Zn-Porphyrins with Nitrogen-Containing Ligands,” Russ. J. Phys. Chem. 79(Suppl. 1), S45–S50 (2005).Google Scholar
  28. 28.
    S. V. Zaitseva, S. A. Zdanovich, A. S. Semeikin, and O. I. Koifman, “Investigation of the Intermolecular Interaction of Phenylene-Capped Zinc Porphyrin with Nitrogen-Containing Ligands,” Zh. Neorg. Khim. 50(11), 1919–1924 (2005) [Russ. J. Inorg. Chem. 50 (11), 1798–1803 (2005)].Google Scholar
  29. 29.
    S. V. Zaitseva, S. A. Zdanovich, and O. I. Koifman, “Complexes of Zinc 5,15-Di(ortho-Methoxyphenyl)octaalkylporphyrinate with Nitrogen-Containing Bases,” Koord. Khim. 32(7), 504–511 (2006) [Russ. J. Coord. Chem. 32 (7), 481–488 (2006)].Google Scholar
  30. 30.
    S. V. Zaitseva, S. A. Zdanovich, and O. I. Koifman, “Effect of Steric Strains in the Macrocycle on the Structure and Properties of Molecular Complexes of (Chloro)[5,15-(para-Butoxyphenyl)-2,8,12,18-Tetramethyl-3,7,13,17-Tetrabutylporphinato]aluminum,” Zh. Obshch. Khim. 76(10), 1732–1739 (2006) [Russ. J. Gen. Chem. 76 (10), 1660–1667 (2006)].Google Scholar
  31. 31.
    O. V. Toldina, N. Mamardashvili, and O. Koifman, “Porphyrins for Selective Binding of Ions and Neutral Molecules of Different Nature,” in Proceedings of the International School on Supramolecular Systems in Chemistry and Biochemistry, Tuapse, Russia, 2006 (Tuapse, 2006), p. 95.Google Scholar
  32. 32.
    O. Koifman and N. Mamardashvili, “Synthesis of Porphyrin-Calixaren Conjugates,” in Proceedings of the International School on Supramolecular Systems in Chemistry and Biochemistry, Tuapse, Russia, 2006 (Tuapse, 2006), p. 33.Google Scholar
  33. 33.
    O. I. Koifman and N. Zh. Mamardashvili, “Tetrapyrrolic Receptors for Nitrogen-Containing Organic Molecules,” in Proceedings of the XXVII Scientific Session of the Russian Seminar on the Chemistry of Porphyrin and Its Analogs, Ivanovo, Russia, 2006 (Ivanovo, 2006), p. 34.Google Scholar
  34. 34.
    S. V. Zaitseva, S. A. Zdanovich, and O. I. Koifman, “Structure and Coordination Properties of Sterically Strained meso-Alkyl-Substituted Zinc Porphyrin,” Zh. Neorg. Khim. 53(6), 973–978 (2008) [Russ. J. Inorg. Chem. 53 (6), 901–905 (2008)].Google Scholar
  35. 35.
    S. V. Zaitseva, S. A. Zdanovich, A. S. Semeikin, and O. I. Koifman, “Synthesis and Coordination Properties of the Zinc Complex of Dimeric Porphyrin in Reactions with Imidazole, 2-Methylimidazole, and the Pyridine in Benzene,” Zh. Obshch. Khim. 78(3), 508–517 (2008) [Russ. J. Gen. Chem. 78 (3), 493–502 (2008)].Google Scholar
  36. 36.
    S. V. Zajceva, T. A. Ageeva, and S. A. Zdanovich, “Coordination Properties of Al-Porphyrins in Solutions and on the Surface of Oxide Carriers,” in Proceedings of the First International Conference on Porphyrins and Phthalocyanines, Dijon, France, 2000 (Dijon, 2000), p. 623.Google Scholar
  37. 37.
    S. V. Zajceva and S. A. Zdanovich, A. S. Semeykin, and O. I. Koifman “Synthesis and Coordination Properties of Sterically Tensed Zinc-Porphyrinin in the Reaction with Nitrogen-Containing Ligands,” in Proceedings of the Second International Conference on Porphyrins and Phthalocyanines, Kyoto, Japan, 2002 (Kyoto, 2002), p. 259.Google Scholar
  38. 38.
    S. V. Zajceva, S. A. Zdanovich, A. S. Semeikin, and O. I. Koifman, “The Influence of Steric Tensions at Zinc-Porphyrins Stability in the Medium with Active Oxygen,” in Proceedings of the Third International Conference on Porphyrins and Phthalocyanines, New Orleans, LA, United States, 2004 (New Orleans, 2004), p. 731.Google Scholar
  39. 39.
    S. V. Zajceva, S. A. Zdanovich, and O. I. Koifman, “Influence of the Nature of the Coordination Metal Atom and Porphyrin on Structure and Properties of Molecular Complexes in the Reaction with the Nitrogenous Bases,” in Proceedings of the Fourth International Conference on Porphyrins and Phthalocyanines, Rome, Italy, 2006 (Rome, 2006), p. 717 [J. Porphyrins Phthalocyanines 10 (4–6), 717].Google Scholar
  40. 40.
    G. M. Mamardashvili, I. A. Shinkar’, N. Zh. Mamardashvili, and O. I. Koifman, “Calix[4]arene-Porphyrin Molecular Receptors for Selective Binding of Ethylenediamines,” Koord. Khim. 33(10), 787–791 (2007) [Russ. J. Coord. Chem. 33 (10), 774–778 (2007)].Google Scholar
  41. 41.
    G. M. Mamardashvili, O. M. Kulikova, N. Zh. Mamardashvili, and O. I. Koifman, “The Effect of the Structure of Aliphatic Diamines on Their Interaction with Zinc Porphyrinates,” Koord. Khim. 34(6), 435–441 (2008) [Russ. J. Coord. Chem. 34 (6), 427–433 (2008)].Google Scholar
  42. 42.
    G. M. Mamardashvili, N. Zh. Mamardashvili, and O. I. Koifman, “Complexation of Zinc Octaalkylporphyrin with Mono-, Di-, and Triethylenediamines in Toluene,” Zh. Neorg. Khim. 52(8), 1299–1303 (2007) [Russ. J. Inorg. Chem. 52 (8), 1215–1219 (2007)].Google Scholar
  43. 43.
    C. A. Hunter and J. K. M. Sanders, “The Nature of p-p Interactions,” J. Am. Chem. Soc. 112, 5525–5534 (1990).CrossRefGoogle Scholar
  44. 44.
    N. Zh. Mamardashvili, O. E. Storonkina, and G. M. Mamardashvili, “Complexation of Zinc Arylporphyrinates with Leucine Methyl Ester,” Koord. Khim. 30(6), 416–420 (2004) [Russ. J. Coord. Chem. 30 (6), 388–391 (2004)].Google Scholar
  45. 45.
    G. M. Mamardashvili, O. E. Storonkina, and N. Zh. Mamardashvili, “Molecular Recognition of α-Amino Acid Esters with Arylporphyrin Zinc Complexes,” Zh. Obshch. Khim. 74(9), 1557–1560 (2004) [Russ. J. Gen. Chem. 74 (9), 1446–1450 (2004)].Google Scholar
  46. 46.
    H. Ogoshi, H. Hatakeyama, J. Kotani, A. Kawashima, and A. Kuroda, “New Mode of Porphyrin Complexation with Nucleobase,” J. Am. Chem. Soc. 113, 8181–8183 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. I. Koifman
    • 1
  • N. Zh. Mamardashvili
    • 1
  1. 1.Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations