Advertisement

Nanotechnologies in Russia

, Volume 4, Issue 3–4, pp 201–214 | Cite as

Ellipsometry as a high-precision technique for subnanometer-resolved monitoring of thin-film structures

  • V. A. Shvets
  • E. V. Spesivtsev
  • S. V. Rykhlitskii
  • N. N. Mikhailov
Experiment

Abstract

The prospects for using optical ellipsometry in advanced nanotechnologies and scientific experiments are discussed. The most important feature of the technique is that there is no perturbing influence on the system to be studied. In combination with its high sensitivity, this feature makes the technique attractive for a number of uses in different fields of knowledge, such as the physics of semiconductors, the physics and chemistry of surfaces, material science, chemistry, biology, etc. A number of modern models of ellipsometers engineered and produced at the Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, are presented. These instruments are based on the new patented static arrangement for ellipsometric measurements. The potential of the instruments is demonstrated by the examples of ellipsometric studies aimed at solving a number of scientific problems and by the example of applying ellipsometry to the technology of growing photosensitive Cd x Hg1 − x Te semiconductor heterostructures.

Keywords

ZnTe Optical Constant Ellipsometric Parameter Ellipsometry Measurement Spectral Ellipsometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Aseev, Ross. Nanotekhnol. 1(1–2), 97 (2006).Google Scholar
  2. 2.
    A. V. Rzhanov, K. K. Svitashev, A. I. Semenenko, L. V. Semenenko, and V. K. Sokolov, Principles of Ellipsometry (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  3. 3.
    R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).Google Scholar
  4. 4.
    P. Drude, Ann. Physik (Weinheim, Ger.) 32, 584 (1887).ADSGoogle Scholar
  5. 5.
    P. Drude, Ann. Physik (Weinheim, Ger.) 34, 489 (1889).Google Scholar
  6. 6.
    P. Drude, Ann. Physik (Weinheim, Ger.) 36, 532 (1889).ADSGoogle Scholar
  7. 7.
    D. E. Aspnes and A. A. Studna, Appl. Opt. 14(1), 220 (1975).ADSGoogle Scholar
  8. 8.
    P. S. Hauge, Surf. Sci. 96, 108 (1980).CrossRefADSGoogle Scholar
  9. 9.
    T. Oshige, T. Yamada, and A. Kazama, “Measuring Method for Ellipsometric Parameters and Ellipsometer,” US Patent No. 5,311,285 (May 10, 1994).Google Scholar
  10. 10.
    R. W. Collins, An Ilsin, H. Fujiwara, J. Lee, Y. Lu, J. Koh, and P. I. Rovira, Thin Solid Films 313–314, 18 (1998).CrossRefGoogle Scholar
  11. 11.
    L. Vina, C. Umbach, M. Cardona, and L. Vodopyanov, Phys. Rev. B.: Condens. Matter 29(12), 6752 (1984).ADSGoogle Scholar
  12. 12.
    D. E. Aspnes and A. A. Studna, Phys. Rev. B: Condens. Matter 27(2), 985 (1983).ADSGoogle Scholar
  13. 13.
    L. Vina and M. Cardona, Phys. Rev. B: Condens. Matter 34(4), 2586 (1986).ADSGoogle Scholar
  14. 14.
    J. C. G. de Sande, C. N. Afonso, J. L. Escudero, R. Serna, F. Catalina, and Bernabéu, E., Appl. Opt. 31(28), 6133 (1992).CrossRefADSGoogle Scholar
  15. 15.
    D. E. Aspnes, A. A. Studna, and E. Kinsbron, Phys. Rev. B: Condens. Matter 29(2), 768 (1984).ADSGoogle Scholar
  16. 16.
    K. Suto and S. Adachi, J. Appl. Phys. 73(2), 926 (1993).CrossRefADSGoogle Scholar
  17. 17.
    D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, J. Appl. Phys. 60(2), 754 (1986).CrossRefADSGoogle Scholar
  18. 18.
    S. Adachi, T. Kimura, and N. Suzuki, J. Appl. Phys. 74(5), 3435 (1983).CrossRefADSGoogle Scholar
  19. 19.
    O. Castaing, R. Granger, J. T. Benhlal, and R. Triboulet, J. Phys.: Condens. Matter, 8, 5757 (1996).CrossRefADSGoogle Scholar
  20. 20.
    Z. G. Hu, Z. M. Huang, Y. N. Wu, G. S. Wang, X. J. Meng, F. W. Shi, and J. H. Chu, J. Vac. Sci. Technol., A 22(4), 1152 (2004).CrossRefADSGoogle Scholar
  21. 21.
    L. Miao, T. Jiang, S. Tanemura, M. Tanemura, N. Nabatova-Gabain, and G. Xu, Phys. Status Solidi C 5(5), 1125 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Rivory, Thin Solid Films 313–314, 333 (1998).CrossRefGoogle Scholar
  23. 23.
    C. Eitzinger, J. Fikar, C. Forsich, J. Humlíćek, A. Krüger, R. Kullmer, J. Laimer, E. Lingenhöle, K. Lingenhöle, M. Mühlberger, T. Müller, H. Störi, and U. Wielsch, Mater. Sci. Forum 518, 423 (2006).CrossRefGoogle Scholar
  24. 24.
    Z. Hammadi, M. Gauch, P. Muller, and G. Quentel, Surf. Sci. 341(1–2), 202 (1995).CrossRefADSGoogle Scholar
  25. 25.
    G. G. Barna, L. M. Loewenstein, S. A. Henck, P. Chapados, K. J. Brankner, R. J. Gale, P. K. Mozumder, S. W. Butler, and J. A. Stefani, Solid State Technol. 37(1), 47 (1994).Google Scholar
  26. 26.
    R. Seitz, R. Brings, and R. Geiger, Appl. Surf. Sci. 252(1), 154 (2005).CrossRefADSGoogle Scholar
  27. 27.
    G. Bonhomme, A. LeMieux, P. Weisbecker, V. V. Tsukruk, and J. M. Dubois, J. Non-Cryst. Solids 334, 532 (2004).CrossRefADSGoogle Scholar
  28. 28.
    Contemporary Problems in Ellipsometry, Ed. by A. V. Rzhanov (Nauka, Novosibirsk, 1980) [in Russian].Google Scholar
  29. 29.
    Ellipsometry as a Method for Investigation of the Surface, Ed. by A. V. Rzhanov (Nauka, Novosibirsk, 1983) [in Russian].Google Scholar
  30. 30.
    Ellipsometry: Theory, Methods, and Applications, Ed. by A. V. Rzhanov and L. A. Il’ina (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  31. 31.
    Ellipsometry: Theory, Methods, and Applications, Ed. by K. K. Svitashev and A. S. Mardezhov (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  32. 32.
    E. V. Spesivtsev, S. V. Rykhlitskii, and N. I. Nazarov, Avtometriya, No. 1, 100 (1997).Google Scholar
  33. 33.
    S. V. Rykhlitskii, E. V. Spesivtsev, N. I. Nazarov, N. A. Aul’chenko, N. I. Ioshchenko, and A. G. Borisov, Prib. Tekh. Eksp., No. 3, 166 (2005).Google Scholar
  34. 34.
    S. V. Rykhlitskii, E. V. Spesivtsev, V. A. Shvets, and V. Yu. Prokop’ev, Prib. Tekh. Eksp., No. 2, 160 (2007).Google Scholar
  35. 35.
    S. V. Rykhlitskii, V. A. Shvets, V. Yu. Prokop’ev, et al., Prib. Tekh. Eksp., No. 5, 160 (2005).Google Scholar
  36. 36.
    E. V. Spesivtsev, S. V. Rykhlitskii, and V. A. Shvets, “An Ellipsometer,” RF Patent No. 2, 303, 623 (2007).Google Scholar
  37. 37.
    V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitskii, Opt. Spektrosk. 97(3), 514 (2004) [Opt. Spectrosc. 97 (3), 483 (2004)].CrossRefGoogle Scholar
  38. 38.
    A. R. Forouhi and I. Bloomer, Phys. Rev. B: Condens. Matter 34(10), 7018 (1986).ADSGoogle Scholar
  39. 39.
    D. E. Aspnes, Thin Solid Films 89, 249 (1982).CrossRefADSGoogle Scholar
  40. 40.
    V. A. Shvets and S. V. Rykhlitskii, Avtometriya, No. 1, 5 (1997).Google Scholar
  41. 41.
    R. Greef, in Proceedings of the First International Conference “Spectroscopic Ellipsometry,” Paris, France, January 11–14, 1993 (Paris, 1993), p. 32.Google Scholar
  42. 42.
    H. Arvin, Thin Solid Films 313–314, 764 (1998).Google Scholar
  43. 43.
    M. Schubert, Springer Tracts Mod. Phys. 209, 1 (2004).Google Scholar
  44. 44.
    S. V. Rykhlitskii, V. A. Shvets, E. V. Spesivtsev, and N. N. Mikhailov, Kondensirovannye Sredy Mezhfaznye Granitsy 8(4), 327 (2006).Google Scholar
  45. 45.
    O. V. Naumova, I. V. Antonova, V. P. Popov, N. V. Sapognikova, Yu. V. Nastaushev, E. V. Spesivtsev, and A. L. Aseev, Microelectron. Eng. 66, 457 (2003).CrossRefGoogle Scholar
  46. 46.
    E. B. Gorokhov, V. A. Volodin, D. V. Marin, D. A. Orekhov, A. G. Cherkov, A. K. Gutakovskii, V. A. Shvets, A. G. Borisov, and M. D. Efremov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39(10), 1210 (2005) [Semiconductors 39 (10), 1168 (2005)].Google Scholar
  47. 47.
    V. A. Shvets, I. E. Tyschenko, S. I. Chikichev, and V. Yu. Prokopiev, Phys. Status Solidi C 5(5), 1287 (2008).CrossRefGoogle Scholar
  48. 48.
    Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridgway, P. Kluth, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Phys. Rev. Lett. 97, 155 701 (2006).Google Scholar
  49. 49.
    V. A. Shvets, S. I. Chikichev, V. Yu. Prokop’ev, S. V. Rykhlitskii, and E. V. Spesivtsev, Avtometriya 40(6), 61 (2004).Google Scholar
  50. 50.
    A. S. Mardezhov, N. N. Mikhailov, and V. A. Shvets, Poverkhnost, No. 12, 92 (1990).Google Scholar
  51. 51.
    K. K. Svitashev, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, A. S. Mardezhov, I. E. Nis, V. S. Varavin, V. Liberman, and V. G. Remesnik, Cryst. Res. Technol. 29(7), 931 (1994).CrossRefGoogle Scholar
  52. 52.
    K. K. Svitashev, V. A. Shvets, A. S. Mardezhov, S. A. Dvoretsky, Yu. G. Sidorov, N. N. Mikhailov, E. V. Spesivtsev, and S. V. Rychlitsky, Mater. Sci. Eng., B 44(1–3), 164 (1997).Google Scholar
  53. 53.
    K. K. Svitashev, V. A. Shvets, A. S. Mardezhov, S. A. Dvoretskii, Yu. G. Sidorov, N. N. Mikhailov, E. V. Spesivtsev, S. V. Rykhlitsky, C. I. Chikichev, and D. N. Pridachin, Avtometriya, No. 4, 100 (1996).Google Scholar
  54. 54.
    V. A. Shvets, S. V. Rykhlitski, E. V. Spesivtsev, N. A. Aulchenko, N. N. Mikhailov, S. A. Dvoretsky, Yu. G. Sidorov, and R. N. Smirnov, Thin Solid Films 455–456, 688 (2004).CrossRefGoogle Scholar
  55. 55.
    N. N. Mikhailov, V. A. Shvets, S. A. Dvoretskii, E. V. Spesivtsev, Yu. G. Sidorov, S. V. Rykhlitskii, and R. N. Smirnov, Avtometriya 39(4), 71 (2003).Google Scholar
  56. 56.
    N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, Int. J. Nanotechnol. 3(1), 120 (2006).Google Scholar
  57. 57.
    S. A. Dvoretskii, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhailov, N. Dai, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, Avtometriya 43(4), 104 (2007).Google Scholar
  58. 58.
    T. Tomita, T. Kinosada, T. Yamashita, M. Shiota, and T. Sakurai, Jpn. J. Appl. Phys., Part 2 25(11), L925 (1986).CrossRefGoogle Scholar
  59. 59.
    Z. T. Jiang, T. Yamagushi, M. Aoyama, and T. Hayashi, Jpn. J. Appl. Phys., Part 1 37(2), 479 (1998).CrossRefGoogle Scholar
  60. 60.
    M. V. Yakushev and V. A. Shvets, Pis’ma Zh. Tekh. Fiz. 25(14), 65 (1999) [Tech. Phys. Lett. 25 (7), 577 (1999)].Google Scholar
  61. 61.
    M. V. Yakushev and V. A. Shvets, Avtometriya, No. 1, 95 (2002).Google Scholar
  62. 62.
    V. R. Chechetkin, D. V. Prokopenko, A. A. Makarov, and A. S. Zasedatelev, Ross. Nanotekhnol. 1(1–2), 13 (2006).Google Scholar
  63. 63.
    G. Jin, Phys. Status Solidi A 205(4), 810 (2008).CrossRefGoogle Scholar
  64. 64.
    M. Anastasiadou, A. De Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, Phys. Status Solidi C 5(5), 1423 (2008).CrossRefGoogle Scholar
  65. 65.
    J. W. P. Bakker, H. Arwin, I. Lundstrom, and D. Filippini, Phys. Status Solidi C 5(5), 1431 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. A. Shvets
    • 1
  • E. V. Spesivtsev
    • 1
  • S. V. Rykhlitskii
    • 1
  • N. N. Mikhailov
    • 1
  1. 1.Institute of Semiconductor Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations