Nanotechnologies in Russia

, Volume 3, Issue 7–8, pp 464–469 | Cite as

Synthesis of carbon nanofibers on an austenitic stainless steel

  • O. A. Nerushev
  • S. A. Novopashin
  • D. V. Smovzh
Nanostructures, Including Nanotubes

Abstract

The surface of the austenitic stainless steel 12Kh18N10T is found to be an effective catalyst for thermal synthesis of carbon nanofibers from acetylene. The morphology of the synthesized material is investigated as a function of the temperature and composition of the working gas mixture. The growth mechanism of carbon nanofibers is proposed. The inference is made that carbide (M 5C2) regions formed in the surface layer upon annealing of the austenitic stainless steel in a hydrocarbon atmosphere are catalytically active zones.

Keywords

Austenitic Stainless Steel Weight Yield Synthesis Time Methane Decomposition Iron Pentacarbonyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liliane Bokobza, “Multiwall Carbon Nanotube Elastomeric Composites: A Review,” Polymer 48, 4907–4920 (2007).CrossRefGoogle Scholar
  2. 2.
    R. Andrews and M. C. Weisenberger, “Carbon Nanotube Polymer Composites,” Curr. Opin. Solid State Mater. Sci. 8, 31–37 (2004).CrossRefGoogle Scholar
  3. 3.
    G. Y. Li, P. M. Wang, and X. Zhao, Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes, Carbon 43, 1239–1245 (2005).CrossRefGoogle Scholar
  4. 4.
    M. K. Amal Esawi, and Mahmoud M. Farag, “Carbon Nanotube Reinforced Composites: Potential and Current Challenges,” Mater. Des. 28, 2394–2401 (2007).Google Scholar
  5. 5.
    Erin Camponeschi, Richard Vance, Marwan Al-Haik, et al., “Properties of Carbon Nanotube-Polymer Composites Aligned with a Magnetic Field,” Carbon 45, 2037–2046 (2007).CrossRefGoogle Scholar
  6. 6.
    T.-E. Chang, A. Kisliuk, S. M. Rhodes, et al., “Conductivity and Mechanical Properties of Well-Dispersed Single-Wall Carbon Nanotube/Polystyrene Composite,” Polymer 47, 7740–7746 (2006).CrossRefGoogle Scholar
  7. 7.
    Jonathan N. Coleman, Martin Cadek, Kevin P. Ryan, et al., “Reinforcement of Polymers with Carbon Nanotubes. The Role of an Ordered Polymer Interfacial Region: Experiment and Modeling,” Polymer 47, 8556–8561 (2006).CrossRefGoogle Scholar
  8. 8.
    A. V. Desai and M. A. Haque, “Mechanics of the Interface for Carbon Nanotube-Polymer Composites,” Thin-Walled Struct. 43, 1787–1803 (2005).CrossRefGoogle Scholar
  9. 9.
    P. E. Nolan, M. J. Schabel, D. C. Lynch, and A. H. Culter, “Hydrogen Control of Deposit Morphology,” Carbon 33(1), 79–85 (1995).CrossRefGoogle Scholar
  10. 10.
    O. F.-K. Schlüter, B. I. Wehner, D. Hu, et al., “The Iron-Catalyzed Synthesis of Carbon Microfibers from Methane: The Influence of Growth Conditions on Conversion, Selectivity, Morphology, and Structure of the Fibers,” Appl. Catal., A 274, 71–77 (2004).CrossRefGoogle Scholar
  11. 11.
    Antonio de Lucas, Prado B. García, Agustín Garrido, et al., “Catalytic Synthesis of Carbon Nanofibers with Different Graphene Plane Alignments Using Ni Deposited on Iron Pillared Clays,” Appl. Catal., A 301, 123–132 (2006).CrossRefGoogle Scholar
  12. 12.
    Seongyop Lim, Seong-Ho Yoon, Yozo Korai, and Isao Mochida, “Selective Synthesis of Thin Carbon Nanofibers: I. Over Nickel-Iron Alloys Supported on Carbon Black,” Carbon 42, 1765–1781 (2004).CrossRefGoogle Scholar
  13. 13.
    Marcello Marella and Michele Tomaselli “Synthesis of Carbon Nanofibers and Measurements of Hydrogen Storage,” Carbon 44, 1404–1413 (2006).CrossRefGoogle Scholar
  14. 14.
    Hiro-aki Ichi-oka, Na-oki Higashi, Yasuzumi Yamada, et al., “Carbon Nanotube and Nanofiber Syntheses by the Decomposition of Methane on Group 8–10 Metal-Loaded MgO Catalysts,” Diamond Relat. Mater. 16, 1121–1125 (2007).CrossRefGoogle Scholar
  15. 15.
    Siang-Piao Chai, Sharif Hussein Sharif Zein, and Abdul Rahman Mohamed “Synthesizing Carbon Nanotubes and Carbon Nanofibers over Supported-Nickel Oxide Catalysts via Catalytic Decomposition of Methane,” Diamond Relat. Mater. 16, 1656–1664 (2007).CrossRefGoogle Scholar
  16. 16.
    De Chen, Kjersti O. Christensen, Ester Ochoa-Fernández, et al., “Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition,” J. Catal. 229, 82–96 (2005).CrossRefGoogle Scholar
  17. 17.
    Miho Maryama, Takayki Fukasaws, Seiichi Suenaga, and Yasuhiro Goto, “Vapor-Grown Carbon Nanofibers Synthesized from a Fe2O3-Al2O3 Composite Catalyst,” J. Eur. Ceram. Soc. 24, 463–468 (2004).CrossRefGoogle Scholar
  18. 18.
    A. V. Melechko, V. I. Merkulov, and T. E. McKnight, “Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly,” J. Appl. Phys. 97, 041301 (2005).Google Scholar
  19. 19.
    F. Ernst, Y. Cao, and G. M. Michal, “Carbides in Low-Temperature-Carburized Stainless Steels,” Acta Mater. 52, 1469–1477 (2004).CrossRefGoogle Scholar
  20. 20.
    F. Ernst, Y. Cao, G. M. Michal, and A. H. Heuer, “Carbide Precipitation in Austenitic Stainless Steel Carburized at Low Temperatures,” Acta Mater. 55, 1895–1906 (2007).CrossRefGoogle Scholar
  21. 21.
    Kurt W. Kolasinski, “Catalytic Growth of Nanowires: Vapor-Liquid-Solid, Vapor-Solid-Solid, Solution-Liquid-Solid, and Solid-Liquid-Solid Growth,” Curr. Opin. Solid State Mater. Sci. 10, 182–191 (2006).CrossRefGoogle Scholar
  22. 22.
    De Chen, Kjersti O. Christensen, Ester Ochoa-Fernández, et al., “Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition,” J. Catal. 229, 82–96 (2005).CrossRefGoogle Scholar
  23. 23.
    O. A. Nerushev, S. Dittmer, R.-E. Morjan, et al., “Particle Size Dependence and Model for Iron-Catalyzed Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition,” J. Appl. Phys. 93(7), 4185–4190 (2003).CrossRefGoogle Scholar
  24. 24.
    P. Chen, H.-B. Zhang, G.-D. Lin, et al., “Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or CO on a Ni-MgO Catalyst,” Carbon 35(10–11), 1495–1501 (1997).CrossRefGoogle Scholar
  25. 25.
    P. V. Fursikov and B. P. Tarasov, “Catalytic Synthesis and Properties of Carbon Nanofibers and Nanotubes. Carbon Nanostructures for Alternative Power Engineering,” ISJAEE, No. 10 (18), (2004).Google Scholar
  26. 26.
    D. Porwal, K. Mukhopadhyay, K. Ram, and G. N. Mathur, “Investigation of the Synthesis Strategy of CNTs from CCVD by Thermal Analysis,” Thermochim. Acta 463(1–2), 53–59 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • O. A. Nerushev
    • 1
  • S. A. Novopashin
    • 2
  • D. V. Smovzh
    • 1
  1. 1.Institute of Thermal Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations