Nanotechnologies in Russia

, Volume 3, Issue 5–6, pp 321–329 | Cite as

Inorganic core/organic shell hybrid nanoparticles: Synthesis and characterization

  • N. V. Voronina
  • I. B. Meshkov
  • V. D. Myakushev
  • N. V. Demchenko
  • T. V. Laptinskaya
  • A. M. Muzafarov
Experiment

Abstract

Core/shell molecular particles, promising components of polymer nanocomposites, were synthesized by condensation of tetraethoxysilane (TEOS) in acetic acid at elevated temperature with subsequent blocking of reactive SiOH groups by trimethylsiloxy groups. Particle diameters ranged from 1 to 10 nm depending on the condensation time until the blocking agent was added. The solubilities of the nanocomposites in THF, toluene, hexane, and other organic solvents made it possible to characterize them by the following physicochemical methods: gel permeation chromatography (GPC), viscometry, dynamic light scattering (DLS), and monolayer compression at the water-air interface. As a result, the particles were found to have compact spherical shapes. The physical state of the particles varied from viscous flow to crystallike depending on the sizes and hardness of their silica cores.

Keywords

Dynamic Light Scattering Silica Particle Hydrodynamic Radius Miniemulsion Polymerization Hybrid Nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Balazs, T. Emrick, and T. P. Russell, “Nanoparticle Polymer Composites: Where Two Small Worlds Meet,” Science (Washington) 314, 1107–1110 (2006).CrossRefGoogle Scholar
  2. 2.
    N. Yu. Kovaleva, P. N. Brevnov, V. G. Grinev, et al., “Synthesis of Nanocomposites Based on Polyethylene and Layered Silicates by the Intercalation Polymerization Method,” Vysokomol. Soedin., Ser. A 46(6), 1–7 (2004) [Polymer Sci. 46 (6), 651–656 (2004)].Google Scholar
  3. 3.
    K. J. Klabunde, J. Habdas, and G. Cardenas-Trivino, “Colloidal Metal Particles Dispersed in Monomeric and Polymeric Styrene and Methyl Methacrylate,” Chem. Mater. 5, 481–483 (1989).CrossRefGoogle Scholar
  4. 4.
    Y.-Q. Hua, Y.-Q. Zhang, L.-B. Wu, et al., “Mechanical and Optical Properties of Polyethylene Filled with Nano-SiO2,” J. Macromol. Sci., Part B: Phys. 44, 149–159 (2005).CrossRefGoogle Scholar
  5. 5.
    E. D. Shchukin, A. V. Pertsev, and E. A. Amelina, Colloidal Chemistry (Vysshaya Shkola, Moscow, 2004), pp. 295–296 [in Russian].Google Scholar
  6. 6.
    F. Zhao, M. Wang, L. Qi, and S. Dong, “Properties of a Nanocomposite Polymer Electrolyte from an Amorphous Comb-Branch Polymer and Nanoparticles,” J. Solid State Electrochem. 8, 283–289 (2004).CrossRefGoogle Scholar
  7. 7.
    H. Sertchook, H. Elimelech, C. Makarov, et al., “Composite Particles of Polyethylene Silica,” J. Am. Chem. Soc. 129(1), 98–108 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Sertchook, H. Elimelech, and D. Avnir, “Composite Particles of Silica/Poly(dimethylsiloxane),” Chem. Mater. 17, 4711–4716 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Sertchook and D. Avnir, “Submicron Silica/Polystyrene Composite Particles Prepared by a One-Step Sol-Gel Process,” Chem. Mater. 15, 1690–1694 (2003).CrossRefGoogle Scholar
  10. 10.
    Y. K. Takahara, S. Ikeda, K. Tachi, et al., “Asymmetrically Modified Silica Particles: A Simple Particulate Surfactant for Stabilization of Oil Droplets in Water,” J. Am. Chem. Soc. 127, 6272–6275 (2005).CrossRefGoogle Scholar
  11. 11.
    S. W. Zhang, S.-X. Zhou, Y.-M. Weng, and L.-M. Wu, “Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization,” Langmuir 21, 2124–2128 (2005).CrossRefGoogle Scholar
  12. 12.
    V. Monteil, J. Stumbaum, R. Thomann, and S. Mecking, “Silica/Polyethylene Nanocomposite Particles from Catalytic Emulsion Polymerization,” Macromolecules 39, 2056–2062 (2006).CrossRefGoogle Scholar
  13. 13.
    Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 Composite Particles via Emulsion Polymerization,” Colloid Polym. Sci. 281, 794–799 (2003).CrossRefGoogle Scholar
  14. 14.
    I. Sondi, T. H. Fedynyshyn, R. Sinta, and E. Matijevic, “Encapsulation of Nanosized Silica by In Situ Polymerization of Tert-Butyl Acrylate Monomer,” Langmuir 16, 9031–9034 (2000).CrossRefGoogle Scholar
  15. 15.
    E. V. Getmanova, A. S. Tereshchenko, G. M. Ignat’eva, et al., “Diphilic Carbosilane Dendrimers with Different Densities of the Hydrophilic Layer,” Izv. Akad. Nauk, Ser. Khim., No. 1, 134–139 (2004) [Russ. Chem. Bull. 53 (1), 137–143 (2004)].Google Scholar
  16. 16.
    A. V. Bystrova, E. A. Tatarinova, M. I. Buzin, and A. M. Muzafarov, “Synthesis of Network Polymers Based on Functional Carbosilane Dendrimers,” Vysokomol. Soedin., Ser. A. 47(8), 1452–1460 (2005). [Polymer Sci., Ser. A 47 (8), 820–827 (2005)].Google Scholar
  17. 17.
    A. V. Bystrova, E. V. Parshina, E. A. Tatarinova, et al., “Carbosilane Dendrimers with a Functional Surface Layer as the Basis for the Preparation of Nanoporous Methylsilsesquioxane Films,” Ross. Nanotekhnol. 2(1–2), 83–89 (2007).Google Scholar
  18. 18.
    N. A. Shumilkina, V. D. Myakushev, E. A. Tatarinova, et al., “Synthesis of a Carbosilane Dendrimer with Fluorocarbon Substituents at the Silicon Atoms in the Surface Layer of the Molecular Structure,” Dokl. Akad. Nauk 403(5), 644–648 (2005) [Dokl. Chem. 403 (Part 2), 155–159 (2005)].Google Scholar
  19. 19.
    J. M. J. Frechet and D. A. Tomalia, Dendrimers and Other Dendritic Polymers (John Wiley and Sons, New York, 2001).Google Scholar
  20. 20.
    R. Iler, Chemistry of Silica (John Wiley and Sons, New York, 1979; Mir, Moscow, 1982).Google Scholar
  21. 21.
    W. Stober, A. Fink, and E. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron-Size Range,” J. Colloid Interface Sci. 26, 62–69 (1968).CrossRefGoogle Scholar
  22. 22.
    V. A. Blaaderen, V. J. Geest, and A. J. Vrij, “Monodisperse Colloidal Silica Spheres from Tetraalkoxysilanes: Particle Formation and Growth Mechanism,” J. Colloid Interface Sci. 154, 481–501 (1992).CrossRefGoogle Scholar
  23. 23.
    V. V. Kazakova, E. A. Rebrov, V. D. Myakushev, et al., “From a Hyperbranched Polyethoxysiloxane toward Molecular Forms of Silica: A Polymer-Based Approach to Monitoring of Silica Properties,” ACS Symp. Ser. 729, Chap. 34, 503–515.Google Scholar
  24. 24.
    I. B. Meshkov, V. V. Kazakova, O. B. Gorbatcevich, et al., “MQ-Type Polymers Based on Hyperbranched Polyethoxysiloxane and Molecular Silicasoles,” Polymer Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 47(2), 1152 (2006).Google Scholar
  25. 25.
    E. Parshina, N. Vasilenko, N. Demchenko, and A. Muzafarov, “New Approach to Soluble High-Molecular Methylsilsesquioxane Synthesis” in Abstracts of Papers of the Fifth International Workshop of Silicon-Based Polymers, Montpellier, France, 2007, p. 93.Google Scholar
  26. 26.
    G. De, B. Karmakar, and D. Ganguli, “Hydrolysis Condensation Reactions of TEOS in the Presence of Acetic Acid Leading to the Generation of Glass-Like Silica Microspheres in Solution at Room Temperature,” J. Mater. Chem. 10, 2289–2293 (2000).CrossRefGoogle Scholar
  27. 27.
    Z. Grubisic, R. Rempp, and H. Benoir, “A Universal Calibration for Gel Permeation Chromatography,” J. Polym. Sci., Part B: Polym. Lett. 5, 753–759 (1967).CrossRefGoogle Scholar
  28. 28.
    Polymer Data Handbook, Ed. by J. E. Mark (Oxford University Press, Oxford, 1999).Google Scholar
  29. 29.
    E. A. Tatarinova, E. A. Rebrov, V. D. Myakushev, et al., “Synthesis and Study of the Properties of the Homologous Series of Polyallylcarbosilane Dendrimers and Their Nonfunctional Analogs,” Izv. Akad. Nauk, Ser. Khim., No. 11, 2484–2493 (2004) [Russ. Chem. Bull. 53 (11), 2592–2600 (2004)].Google Scholar
  30. 30.
    S. I. Goloudina and A. A. Abramzon, “On the Aggregate State of Surfactant Monolayers on the Liquid Surface,” in Advances in Colloid Chemistry (Khimiya, Leningrad, 1991), pp. 329–261 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • N. V. Voronina
    • 1
    • 2
  • I. B. Meshkov
    • 1
  • V. D. Myakushev
    • 1
  • N. V. Demchenko
    • 1
  • T. V. Laptinskaya
    • 2
  • A. M. Muzafarov
    • 1
    • 2
  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations