The Effect of the Water–Precursor Ratio on the Structural Characteristics of Alumina Aerogels

Abstract

Alumina aerogels are obtained by the sol–gel synthesis and subsequent supercritical drying. The sol–gel synthesis is carried out by adding epichlorohydrin to aluminum chloride dissolved in water and ethanol. The supercritical drying (SCD) of the gels is carried out in a medium of supercritical carbon dioxide SC-CO2 at 40°C and 12.0 MPa for 8 h. The structural characteristics of the aerogels are studied by low-temperature adsorption of nitrogen, helium pycnometry, and scanning electron microscopy. The obtained aerogels have a high specific surface area (up to 764 m2/g) and a high level of porosity (up to 96.2%, with the pore volume of up to 4.9 cm3/g), as well as a low density (up to 0.066 g/cm3). It is found that the structural characteristics of the alumina aerogels can be controlled by varying the water : precursor ratio. In particular, increasing this ratio leads to an increase in the specific surface area and pore volume.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    C. Buratti, F. Merli, and E. Moretti, Energy Build. 152, 472 (2017).

    Article  Google Scholar 

  2. 2

    F. Xu, J. Xu, H. Xu, Y. Lu, H. Yang, Z. Tang, Z. Lu, R. Fu, and D. Wu, Energy Storage Mater. 7, 8 (2017).

    Article  Google Scholar 

  3. 3

    F. Yang, J. Zhu, X. Zou, X. Pang, R. Yang, S. Chen, Y. Fang, T. Shao, X. Luo, and L. Zhang, Ceram. Int. 44, 1078 (2018).

    CAS  Article  Google Scholar 

  4. 4

    M. Anas, A. G. Gonel, S. E. Bozbag, and C. Erkey, J. CO2 Util. 21, 82 (2017).

  5. 5

    H. Khoshnevis, S. M. Mint, E. Yedinak, T. Q. Tran, A. Zadhoush, M. Youssefi, M. Pasquali, and H. M. Duong, Chem. Phys. Lett. 693, 146 (2018).

    CAS  Article  Google Scholar 

  6. 6

    T. F. Baumann, A. E. Gash, S. C. Chinn, A. M. Sawvel, R. S. Maxwell, and J. H. Satcher, Chem. Mater. 17, 395 (2005).

    CAS  Article  Google Scholar 

  7. 7

    M. S. Bono, A. M. Anderson, and M. K. Carroll, J. Sol–Gel Sci. Technol. 53, 216 (2010).

    CAS  Article  Google Scholar 

  8. 8

    S. J. Juhl, N. J. Dunn, M. K. Carroll, A. M. Anderson, B. A. Bruno, J. E. Madero, and M. S. Bono, Jr., J. Non-Cryst. Solids 426, 141 (2015).

    CAS  Article  Google Scholar 

  9. 9

    J. Poco, J. Satcher, Jr., and L. Hrubesh, J. Non-Cryst. Solids 285, 57 (2001).

    CAS  Article  Google Scholar 

  10. 10

    J. Yoo, Y. Bang, S. J. Han, S. Park, J. H. Song, and I. K. Song, J. Mol. Catal. A 410, 74 (2015).

    CAS  Article  Google Scholar 

  11. 11

    G. K. Pinheiro, R. B. Serpa, L. V. de Souza, M. L. Sartorelli, F. T. Reis, and C. R. Rambo, Colloids Surf., A 527, 89 (2017).

    CAS  Article  Google Scholar 

  12. 12

    Aerogels Handbook, Ed. by M. A. Aegerter, N. Leventis, and M. M. Koebel (Springer Science, New York, 2011).

    Google Scholar 

  13. 13

    A. Lebedev, A. Katalevich, and N. Menshutina, J. Supercrit. Fluids 106, 122 (2015).

    CAS  Article  Google Scholar 

  14. 14

    S. Lermontov, E. Straumal, A. Mazilkin, I. Zverkova, A. Baranchikov, B. Straumal, and V. Ivanov, J. Phys. Chem. C 120, 3319 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Y. Tokudome, K. Nakanishi, K. Kanamori, K. Fujita, H. Akamatsu, and T. Hanada, J. Colloid Interface Sci. 338, 506 (2009).

    CAS  Article  Google Scholar 

  16. 16

    W. Bahloul, F. Mélis, V. Bounor-Legaré, and P. Cassagnau, Mater. Chem. Phys. 134, 399 (2012).

    CAS  Article  Google Scholar 

  17. 17

    J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).

    CAS  Article  Google Scholar 

  18. 18

    P. Y. Tsygankov, I. I. Khudeev, A. E. Lebedev, E. A. Lebedev, and N. V. Menshutina, Chem. Eng. Trans. 70, 877 (2018).

    Google Scholar 

  19. 19

    M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Pure Appl. Chem. 87, 1051 (2015).

    CAS  Article  Google Scholar 

  20. 20

    M. Kruk and M. Jaroniec, Chem. Mater. 13, 3169 (2001).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies by low-temperature adsorption of nitrogen, helium pycnometry, and scanning electron microscopy were performed on the equipment of the Center for Collective Use of Mendeleev University of Chemical Technology of Russia.

Funding

The studies were supported by the Ministry of Science and Higher Education of the Russian Federation in the base part of state task no. 10.4658.2017/BU.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. I. Khudeev.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menshutina, N.V., Lebedev, A.E. & Khudeev, I.I. The Effect of the Water–Precursor Ratio on the Structural Characteristics of Alumina Aerogels. Russ. J. Phys. Chem. B 14, 1229–1235 (2020). https://doi.org/10.1134/S1990793120070222

Download citation

  • Keywords: aerogel
  • alumina
  • metal oxides
  • supercritical drying
  • supercritical carbon dioxide
  • specific surface area
  • porosity