Highly Porous Fluorescent Materials Based on Polymer Matrices Impregnated with Eu(dbm)3 Molecules in a Supercritical Carbon Dioxide Medium


The possibility of creating luminescent films based on highly porous polymer materials doped with the europium complex Eu(dbm)3 · H2O in a supercritical carbon dioxide medium using ethanol as a co-solvent is demonstrated. The initial polymer samples are polytetrafluoroethylene films obtained using thermal spraying or electrospinning techniques and polybenzimidazole films with foam-like structures obtained using laser irradiation. Deposition of the Eu complex in the pores of such materials (up to a few micrometers in size) leads to the appearance of bright characteristic photoluminescence (PL) in the red region, the intensity of which depends on the impregnation method and subsequent processing of the samples. An analysis of the intensity ratio between the electric dipole and magnetic dipole components of the PL spectra allow us to draw conclusions about the changes in the nearest environment of Eu3+ ions in each of the studied host materials.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Q. G. Meng, L. S. Fu, S. B. Wang, H. J. Zhang, H. R. Li, X. H. Chuai, Y. H. Li, and S. Y. Zh, Thin Solid Films 388, 87 (2001).

    CAS  Article  Google Scholar 

  2. 2

    S. A. Eliseeva and J. C. Bunzli, Chem. Soc. Rev. 39, 189 (2010).

    CAS  Article  Google Scholar 

  3. 3

    J. Xu, Zh. Sun, L. Jia, B. Li, L. Zhao, X. Liu, Y. Ma, H. Tian, Q. Wang, W. Liua, and Y. Tang, Dalton Trans. 40, 12909 (2011).

    CAS  Article  Google Scholar 

  4. 4

    L. Sun, X. Ge, J. Liu, Y. Qiu, Z. Wei, B. Tian, and L. Shi, Nanoscale 6, 13242 (2014).

    CAS  Article  Google Scholar 

  5. 5

    W. Guan, W. Zhou, J. Lu, and C. Lu, Chem. Soc. Rev. 44, 6981 (2015).

    CAS  Article  Google Scholar 

  6. 6

    A. G. Mirochnik, N. V. Petrochenkova, A. S. Shishov, B. V. Bukvetskii, T. B. Emelina, A. A. Sergeev, and S. S. Voznesenskii, Spectrochim. Acta, Part A 155, 111 (2016).

    CAS  Article  Google Scholar 

  7. 7

    G. F. de Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., Coord. Chem. Rev. 196, 165 (2000).

    CAS  Article  Google Scholar 

  8. 8

    K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).

    CAS  Article  Google Scholar 

  9. 9

    V. I. Gerasimova, A. A. Antoshkov, Yu. S. Zavorotny, A. O. Rybaltovskii, and D. A. Lemenovskii, J. Lumin. 134, 339 (2012).

    Article  Google Scholar 

  10. 10

    V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. C. Smith, P. S. Timashev, J. Yang, Yu. S. Zavorotnyi, and S. M. Howdle, Green Chem. 3, 2696 (2011).

    Article  Google Scholar 

  11. 11

    R. K. Kankala, Y. S. Zhang, S. B. Wang, C. H. Lee, and A. Z. Chen, Adv. Healthcare Mater., 1700433 (2017).

  12. 12

    A. O. Rybaltovskii, V. G. Arakcheev, A. N. Bekin, A. F. Danilyuk, V. I. Gerasimova, N. V. Minaev, E. N. Golubeva, O. O. Parenago, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 9, 1137 (2015).

    CAS  Article  Google Scholar 

  13. 13

    A. L. Volynskii and N. F. Bakeev, Polymer Sci., Ser. C 53, 35 (2011).

    CAS  Article  Google Scholar 

  14. 14

    E. N. Bolbasov, K. S. Stankevich, E. A. Sudarev, V. M. Bouznik, V. L. Kudryavtseva, L. V. Antonova, V. G. Matveeva, Y. G. Anissimov, and S. I. Tverdokhlebov, Mater. Chem. Phys., No. 182, 338 (2016).

  15. 15

    A. O. Rybaltovskii, V. M. Buznik, Yu. S. Zavorotny, P. S. Timashev, S. N. Churbanov, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 12, 1112 (2018).

    CAS  Article  Google Scholar 

  16. 16

    S. Gaspard, M. Oujja, C. Abrusci, F. Catalina, S. Lazare, J. P. Desvergne, and M. Castillejo, J. Photochem. Photobiol., A 193, 187 (2008).

    CAS  Article  Google Scholar 

  17. 17

    A. A. Akovantseva, N. A. Aksenova, T. S. Zarkhina, L. I. Krotova, N. V. Minaev, A. O. Rybaltovskii, B. Ch. Kholkhoev, I. A. Farion, V. I. Yusupov, V. F. Burdukovskii, V. N. Bagratashvili, and P. S. Timashev, Russ. J. Appl. Chem. 90, 84 (2017).

    CAS  Article  Google Scholar 

  18. 18

    V. M. Buznik and V. G. Kuryavyi, Ross. Khim. Zh. 52 (3), 131 (2008).

    CAS  Google Scholar 

  19. 19

    V. N. Bagratashvili, S. G. Dorofeev, A. A. Ischenko, V. V. Koltashev, N. N. Kononov, A. A. Krutikova, A. O. Rybaltovskii, and G. V. Fetisov, Russ. J. Phys. Chem. B 4, 1164 (2010).

    Article  Google Scholar 

  20. 20

    N. M. Bityurin, Quantum Electron. 40, 955 (2010).

    CAS  Article  Google Scholar 

  21. 21

    L. R. Melby, N. J. Rose, E. Abramson, and J. C. Caris, J. Am. Chem. Soc. 64, 5117 (1964).

    Article  Google Scholar 

  22. 22

    A. O. Rybaltovskii, A. A. Aksenov, V. I. Gerasimova, V. V. Zosimov, V. K. Popov, A. B. Solov’eva, P. S. Timashev, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt. 3 (1), 50 (2008).

    Google Scholar 

  23. 23

    M. Banchero, A. Ferri, L. Manna, and S. Sicardi, Fluid Phase Equlib. 243, 107 (2006).

    CAS  Article  Google Scholar 

  24. 24

    T. Suzuki, N. Tsuge, and K. Nagahama, Fluid Phase Equlib. 67, 213 (1991).

    CAS  Article  Google Scholar 

  25. 25

    E. Kenneth, M. S. Korber, A. Bruce, and M. D. Kraemer, Microsurgery 10, 113 (1989).

    Article  Google Scholar 

  26. 26

    V. L. Ermolaev, V. G. Aleshin, and E. A. Saenko, Sov. Phys. Dokl. 10, 1186 (1965).

    Google Scholar 

  27. 27

    V. A. Smirnov, G. A. Sukhadol’skii, O. E. Filippova, and A. R. Khokhlov, Russ. J. Phys. Chem. A 72, 618 (1998).

    Google Scholar 

  28. 28

    A. Yu. Taraeva, V. I. Gerasimova, Yu. S. Zavorotnyi, A. O. Rybaltovskii, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt. 3 (1), 59 (2008).

    Google Scholar 

Download references


We thank S.I. Krotova (staff member of the Federal Research Center Crystallography and Photonics, Russian Academy of Sciences) for her assistance in measuring the samples by the SEM method, as well as E.S. Vyrazheikin and E.M. Usherovich (OOO Pervyi Ftoroplastovyi Zavod) for providing samples of porous films.


This work was supported by the Russian Foundation for Basic Research (project no. 18-29-06056 in the part regarding the development of SCF methods for doping polymer films with europeium-containing compounds and project no. 18-33-00645 in the part regarding the development of methods for creating foam-like structures in the OPBI) and the Ministry of Science and Higher Education of the Russian Federation as part of a state assignment of the Federal Research Center Crystallography and Photonics, Russian Academy of Sciences regarding the development of electron microscopy and luminescent techniques to study porous materials in the problem of creating a new elemental base for micro- and nanoelectronics.

Author information



Corresponding author

Correspondence to A. O. Rybaltovskii.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rybaltovskii, A.O., Akovantseva, A.A., Bolbasov, E.N. et al. Highly Porous Fluorescent Materials Based on Polymer Matrices Impregnated with Eu(dbm)3 Molecules in a Supercritical Carbon Dioxide Medium. Russ. J. Phys. Chem. B 14, 1081–1089 (2020). https://doi.org/10.1134/S1990793120070155

Download citation

  • Keywords: europium ions
  • photoluminescence
  • polymer films
  • supercritical carbon dioxide
  • polytetrafluoroethylene
  • fibrous materials
  • foam-like structures