Synthesis of Polymer–Metal Composites by the Impregnation of Hypercrosslinked Polystyrene with Palladium Compounds in Supercritical Carbon Dioxide and Their Catalytic Activity in the Liquid-Phase Hydrogenation of Diphenylacetylene

Abstract

Composites—palladium metal particles in a polymer matrix—are obtained by impregnation of hypercrosslinked polystyrene with palladium compounds in supercritical carbon dioxide (SC-CO2) followed by molecular hydrogen reduction. The synthesized composites exhibit a high level of catalytic activity in the liquid-phase hydrogenation of diphenylacetylene (DPA). The turnover frequency (TOF) is 15–50 min–1 and the selectivity in the formation of diphenylethylene is 60–80% at ~90% conversion of the substrate.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, and A. A. Romero, ChemSusChem 2, 18 (2009).

    CAS  Article  Google Scholar 

  2. 2

    F. Tao, in Metal Nanoparticles for Catalysis: Advances and Applications (R. Soc. Chem., London, 2014), p. 285.

  3. 3

    V. Polshettiwar and R. S. Varma, Green Chem. 12, 743 (2010).

    CAS  Article  Google Scholar 

  4. 4

    M. Polyakov and V. N. Bagratashvili, Ros. Khim. Zh. 43 (2), 93 (1999).

    CAS  Google Scholar 

  5. 5

    D. Yu. Zalepugin, N. A. Til’kuvnova, I. V. Chernyshova, and V. S. Polyakov, Sverkhkrit. Flyuidy: Teor. Prakt. 1 (1), 27 (2006).

    Google Scholar 

  6. 6

    M. Türk and C. Erkey, J. Supercrit. Fluids 134, 176 (2018).

    Article  Google Scholar 

  7. 7

    S. Miao, C. Zhang, Z. Liu, B. Han, Y. Xie, S. Ding, and Z. Yang, L. Phys. Chem. C 112, 774 (2008).

    CAS  Google Scholar 

  8. 8

    I. O. Rybakova, A. E. Lazhko, A. V. Zolotuchina, P. S. Timashev, V. N. Bagratashvili, A. L. Maksimov, E. A. Karakhanov, and O. P. Parenago, Russ. J. Phys. Chem. B 10, 1163 (2016).

    CAS  Article  Google Scholar 

  9. 9

    O. P. Parenago, P. S. Timashev, E. A. Karakhanov, A. L. Maksimov, A. E. Lazhko, A. V. Zolotukhina, and V. N. Bagratashvili, J. Supercrit. Fluids 140, 387 (2018).

    CAS  Article  Google Scholar 

  10. 10

    V. A. Davankov and M. P. Tsyurupa, React. Polym. 13, 27 (1990).

    CAS  Article  Google Scholar 

  11. 11

    M. P. Tsyurupa, Z. K. Blinnikova, N. A. Proskurina, A. V. Pastukhov, L. A. Pavlova, and V. A. Davankov, Nanotechnol. Russ. 4, 665 (2009).

    Article  Google Scholar 

  12. 12

    M. P. Tsyurupa, Z. K. Blinnikova, Y. A. Davidovich, S. E. Lyubimov, A. V. Naumkin, and V. A. Davankov, React. Funct. Polym. 72, 973 (2012).

    CAS  Article  Google Scholar 

  13. 13

    R. Castaldo, G. Gentile, M. Avella, C. Carfagna, and V. Ambrogi, Polymer 9, 651 (2017).

    Article  Google Scholar 

  14. 14

    S. N. Sidorov, L. M. Bronstein, V. A. Davankov, M. P. Tsyurupa, S. P. Solodovnikov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, Chem. Mater. 11, 3210 (1999).

    CAS  Article  Google Scholar 

  15. 15

    S. N. Sidorov, I. V. Volkov, V. A. Davankov, M. P. Tsyurupa, P. M. Valetsky, L. M. Bronstein, R. Karlinsey, J. W. Zwanziger, V. G. Matveeva, E. M. Sulman, N. V. Lakina, E. A. Wilder, and R. J. Spontak, J. Am. Chem. Soc. 123, 10502 (2001).

    CAS  Article  Google Scholar 

  16. 16

    V. Yu. Doluda, E. M. Sulman, V. G. Matveeva, M. G. Sulman, N. V. Lakina, A. I. Sidorov, P. M. Valetsky, and L. M. Bronstein, Chem. Eng. J. 134, 256 (2007).

    CAS  Article  Google Scholar 

  17. 17

    S. E. Lyubimov, E. A. Rastorguev, K. I. Lubentsova, A. A. Korlyukov, and V. A. Davankov, Tetrahedron Lett. 54, 1116 (2013).

    CAS  Article  Google Scholar 

  18. 18

    V. G. Matveeva, V. N. Sapunov, M. E. Grigor’ev, M. B. Lebedeva, and E. M. Sul’man, Kinet. Catal. 55, 695 (2014).

    CAS  Article  Google Scholar 

  19. 19

    M. Yu. Rakitin, V. Yu. Doluda, A. A. Tyanina, A. I. Petrova, E. M. Sulman, and V. G. Matveeva, Russ. J. Phys. Chem. B 11, 1113 (2017).

    CAS  Article  Google Scholar 

  20. 20

    V. Yu. Doluda, E. M. Sulman, V. G. Matveeva, M. G. Sulman, A. V. Bykov, N. V. Lakina, A. I. Sidorov, P. M. Valetsky, and L. M. Bronstein, Top. Catal. 56, 688 (2013).

    CAS  Article  Google Scholar 

  21. 21

    O. V. Manaenkov, V. G. Matveeva, E. M. Sulman, A. E. Filatova, O. Yu. Makeeva, O. V. Kislitza, A. I. Sidorov, V. Yu. Doluda, and M. G. Sulman, Top. Catal. 57, 1476 (2014).

    CAS  Article  Google Scholar 

  22. 22

    S. E. Lyubimov, A. A. Vasil’ev, A. A. Korlyukov, M. M. Ilyin, S. A. Pisarev, V. V. Matveev, A. E. Chalykh, S. G. Zlotin, and V. A. Davankov, React. Funct. Polym. 69, 755 (2009).

    CAS  Article  Google Scholar 

  23. 23

    E. M. Sulman, A. A. Ivanov, V. S. Chernyavsky, M. G. Sulman, A. I. Bykov, A. I. Sidorov, V. Yu. Doluda, V. G. Matveeva, L. M. Bronstein, B. D. Stein, and A. S. Kharitonov, Chem. Eng. J. 176–177, 33 (2011).

    Article  Google Scholar 

  24. 24

    V. Y. Doluda, I. B. Tsvetkova, A. V. Bykov, V. G. Matveeva, A. I. Sidorov, M. G. Sulman, P. M. Valetsky, B. D. Stein, E. M. Sulman, and L. M. Bronstein, Green Proc. Synt. 2, 25 (2013).

    CAS  Google Scholar 

  25. 25

    A. A. Stepacheva, V. G. Matveeva, E. M. Sulman, and V. N. Sapunov, Chem. Eng. Trans. 52, 625 (2016).

    Google Scholar 

  26. 26

    V. N. Sapunov, A. A. Stepacheva, E. M. Sulman, J. Warna, P. Mäki-Arvela, M. G. Sulman, A. I. Sidorov, B. D. Stein, D. Yu. Murzin, and V. G. Matveeva, J. Ind. Eng. Chem. 46, 426 (2017).

    CAS  Article  Google Scholar 

  27. 27

    S. M. Howdle, M. A. Healy, and M. Poliakoff, J. Am. Chem. Soc. 112, 4804 (1990).

    CAS  Article  Google Scholar 

  28. 28

    M. G. Hitzler and M. Poliakoff, Chem. Commun., 1667 (1997).

  29. 29

    M. G. Hitzler, F. R. Smail, S. K. Ross, and M. Poliakoff, Org. Process Res. Developm. 2, 137 (1998).

    CAS  Article  Google Scholar 

  30. 30

    P. V. Markov, G. O. Bragina, G. N. Baeva, O. P. Tkachenko, I. S. Mashkovsky, I. A. Yakushev, N. Yu. Kozytsyna, M. N. Vargaftik, and A. Yu. Stakheev, Kinet. Catal. 56, 591 (2015).

    CAS  Article  Google Scholar 

  31. 31

    J. A. Darr and M. Poliakoff, Chem. Rev. 99, 495 (1999).

    CAS  Article  Google Scholar 

  32. 32

    A. D. Alentiev, D. M. Dzhaparidze, N. N. Gavriliva, V. P. Shantarovich, E. V. Kiseleva, M. A. Topchiy, A. F. Asachenko, P. S. Gribanov, M. S. Nechaev, S. A. Legkov, G. N. Bondarenko, and M. V. Bermeshev, Polymers 10, 1382 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank D.Sc. M.V. Bermeshev (Institute of Petrochemical Synthesis, Russian Academy of Sciences) for providing the polynorbornene sample.

Funding

This work was financially supported by the Russian Foundation for Basic Research (grant no. 18-29-06032).

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. P. Parenago.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lazhko, A.E., Bragina, G.O., Lyubimov, S.E. et al. Synthesis of Polymer–Metal Composites by the Impregnation of Hypercrosslinked Polystyrene with Palladium Compounds in Supercritical Carbon Dioxide and Their Catalytic Activity in the Liquid-Phase Hydrogenation of Diphenylacetylene. Russ. J. Phys. Chem. B 14, 1172–1177 (2020). https://doi.org/10.1134/S1990793120070118

Download citation

  • Keywords: hypercrosslinked polystyrene
  • palladium compounds
  • supercritical carbon dioxide
  • composite
  • palladium particles
  • hydrogenation
  • diphenylacetylene
  • activity