Bidirectional Totally Asymmetric Simple Exclusion Process with a Bottleneck and Different Hopping Rates

Abstract

This Letter investigates the bidirectional totally asymmetric simple exclusion process (TASEP) with a bottleneck and different hopping rates. The phase diagrams are provided by theoretical analysis and the currents of theoretical predication are checked by computer simulations. When the hopping rate of lane 2 (p2) is fixed and the hopping rate of lane 1 (p1) reduces, the areas of high density (HD) phase for fast lane increases and that for slow lane reduces. The length of bottleneck is large enough, the currents of theoretical calculation and simulation agree well. Importantly, the current of maximum current (MC) phase is systematically underestimated theoretical results for short bottleneck because the transients dominate the behavior of the system.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    D. Chowdhury, A. Schadschneider, and K. Nishinari, Phys. Life Rev. 2, 318 (2005).

    Article  Google Scholar 

  2. 2

    D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).

    Article  Google Scholar 

  3. 3

    A. John, A. Schadschneider, D. Chowdhury, and K. Nishinari, Phys. Rev. Lett. 102, 108001 (2009).

    Article  Google Scholar 

  4. 4

    T. Chou, K. Mallick, and R. K. P. Zia, Rep. Prog. Phys. 74, 116601 (2011).

    Article  Google Scholar 

  5. 5

    T. Karzig and F. von Oppen, Phys. Rev. B 81, 045317 (2010).

    Article  Google Scholar 

  6. 6

    J. de Gier and B. Nienhuis, Phys. Rev. E 59, 4899 (1999).

    CAS  Article  Google Scholar 

  7. 7

    A. B. Kolomeisky, J. Phys. A 31, 1153 (1998).

    Article  Google Scholar 

  8. 8

    A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. Lett. 90, 086601 (2003).

    CAS  Article  Google Scholar 

  9. 9

    B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys. A: Math. Gen. 26, 149 (1993).

    Article  Google Scholar 

  10. 10

    M. E. Fouladvand, Phys. Rev. E 62, 5940 (2000).

    CAS  Article  Google Scholar 

  11. 11

    M. E. Fouladvand, Z. Sadjadi, and M. R. Shaebani, Phys. Rev. E 70, 046132 (2004).

    Article  Google Scholar 

  12. 12

    E. Pronina and A. B. Kolomeisky, J. Phys. A 37, 9907 (2004).

    Article  Google Scholar 

  13. 13

    T. Mitsudo and H. Hayakawa, J. Phys. A 38, 3087 (2005).

    Article  Google Scholar 

  14. 14

    E. Pronina and A. B. Kolomeisky, Phys. A (Amsterdam, Neth.) 372, 12 (2006).

  15. 15

    T. Reichenbach, E. Frey, and T. Franosch, New J. Phys. 9, 159 (2007).

    Article  Google Scholar 

  16. 16

    E. Pronina and A. B. Kolomeisky, J. Phys. A 40, 2275 (2007).

    Article  Google Scholar 

  17. 17

    S. Xiao, M. Z. Liu, and J. J. Cai, Phys. Lett. A 374, 8 (2009).

    CAS  Article  Google Scholar 

  18. 18

    M. R. Evans, D. P. Foster, C. Godreche, and D. Mukamel, Phys. Rev. Lett. 74, 208 (1995).

    CAS  Article  Google Scholar 

  19. 19

    V. Popkov, M. R. Evans, and D. Mukamel, J. Phys. A: Math. Theor. 41, 432002 (2008).

    Article  Google Scholar 

  20. 20

    D. W. Erickson, G. Pruessner, B. Schmittmann, and R. K. P. Zia, J. Phys. A: Math. Gen. 38, L659 (2005).

    Article  Google Scholar 

  21. 21

    S. Gupta, D. Mukamel, and G. Schutz, J. Phys. A 42, 485002 (2009).

    Article  Google Scholar 

  22. 22

    S. Großkinsky, G. M. Schutz, and R. D. Willmann, J. Stat. Phys. 128, 587 (2007).

    Article  Google Scholar 

  23. 23

    S. O. Travin, Y. I. Skurlatov, and A. V. Roshchin, Russ. J. Phys. Chem. B 14, 86 (2020).

    CAS  Article  Google Scholar 

  24. 24

    E. V. Shtamm, Y. I. Skurlatov, A. V. Roshchin, V. O. Shvydkii, L. V. Semenyak, and I. V. Semenova, Russ. J. Phys. Chem. B 14, 122 (2020).

    CAS  Article  Google Scholar 

  25. 25

    E. I. Mareev, V. A. Aleshkevich, F. V. Potemkin, N. V. Minaev, and V. M. Gordienko, Russ. J. Phys. Chem. B 13, 1214 (2019).

    CAS  Article  Google Scholar 

  26. 26

    S. O. Travin, O. B. Gromov, D. V. Utrobin, and A. V. Roshchin, Russ. J. Phys. Chem. B 13, 975 (2019).

    CAS  Article  Google Scholar 

  27. 27

    R. Kapon, A. Topchik, D. Mukamel, and Z. Reich, Phys. Biol. 5, 036001 (2008).

    Article  Google Scholar 

  28. 28

    N. Rajewsky, A. Schadschneider, and M. Schreckenberg, J. Phys. A 29, L305 (1996).

    Article  Google Scholar 

Download references

Funding

In this paper, Song Xiao and Xiaoyu Chen contributed equally to this work. Authors acknowledge the support of Item sponsored by National Natural Science Foundation (Grant no. 51568032).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Song Xiao or Yanna Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song Xiao, Chen, X. & Liu, Y. Bidirectional Totally Asymmetric Simple Exclusion Process with a Bottleneck and Different Hopping Rates. Russ. J. Phys. Chem. B 14, 929–933 (2020). https://doi.org/10.1134/S1990793120060317

Download citation

Keywords:

  • bidirectional
  • TASEP
  • bottleneck
  • different hopping rates