UV Photolysis in a C2H2F2Br2 Mixture with Oxygen

Abstract

The photolysis of C2H2F2Br2 mixed with oxygen is studied at T = 298 K for different times of irradiating the mixture using a mercury lamp having the maximum emission at λ = 253.7 nm. The absorption spectra are recorded in the range of wavelengths of 200 to 900 nm using Specord M-40 spectrophotometer. The kinetics of the photolysis are studied monitoring consumption of the initial halon and accumulation of molecular bromine. The absorption’s cross sections are estimated for C2H2F2Br2 halon in the range of wavelengths 230 to 258 nm. A mechanism of photolysis of C2H2F2Br2 mixed with oxygen is proposed. The cross section for the dissociation of C2H2F2Br2 is determined at the wavelength of 253.7 nm. The ratio of the reaction rate constant for the C2H2F2Br radical formed during the photolysis with molecular bromine to the reaction rate constant of the same radical with molecular oxygen is estimated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    I. K. Larin, Chemical Physics of the Ozone Layer (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  2. 2

    I. K. Larin, Russ. J. Phys. Chem. B 13, 867 (2019).

    CAS  Article  Google Scholar 

  3. 3

    I. K. Larin, Russ. J. Phys. Chem. B 13, 548 (2019).

    CAS  Article  Google Scholar 

  4. 4

    I. K. Larin, Russ. J. Phys. Chem. B 12, 1094 (2018).

    CAS  Article  Google Scholar 

  5. 5

    J. S. Daniel, S. Solomon, and D. L. Albritton, J. Geophys. Res. 100, 1271 (1995).

    CAS  Article  Google Scholar 

  6. 6

    J. S. Daniel, S. Solomon, R. W. Portman, and R. R. Garcia, J. Geophys. Res. 104, 23871 (1999).

    CAS  Article  Google Scholar 

  7. 7

    I. K. Larin, T. I. Belyakova, N. A. Messineva, A. I. Spasskii, and E. M. Trofimova, Kinet. Catal. 52, 513 (2011).

    CAS  Article  Google Scholar 

  8. 8

    T. I. Belyakova, I. K. Larin, N. A. Messineva, A. I. Spasskii, and E. M. Trofimova, Kinet. Catal. 58, 105 (2017).

    CAS  Article  Google Scholar 

  9. 9

    T. I. Belyakova, I. K. Larin, N. A. Messineva, A. I. Spasskii, and E. M. Trofimova, Russ. J. Phys. Chem. B 12, 352 (2018).

    CAS  Article  Google Scholar 

  10. 10

    Halocarbons: Ozone Depletion and Global Warming Overview (NASA, 2006).

  11. 11

    J. B. Burkholder, R. R. Wilson, T. Gierczak, et al., J. Geophys. Res. 96, 5025 (1991).

    CAS  Article  Google Scholar 

  12. 12

    T. Noto, V. Babushok, A. Hamins, and W. Tsang, Combust. Flame 112, 147 (1998).

    CAS  Article  Google Scholar 

  13. 13

    C. A. de Wit, Chemosphere 46, 583 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Montreal Protocol on Substances that Deplete the Ozone Layer, U. N. Environment Programme (UNEP), Assessment Report (Halons Tech. Options Committee, 2006).

  15. 15

    I. K. Larin, T. I. Belyakova, N. A. Messineva, A. I. Spasskii, and E. M. Trofimova, Kinet. Catal. 55, 549 (2014).

    CAS  Article  Google Scholar 

  16. 16

    K.-J. Hsu and W. B. DeMore, Geophys. Rev. Lett. 21, 805 (1994).

    CAS  Article  Google Scholar 

  17. 17

    K.-J. Hsu and W. B. DeMore, J. Phys. Chem. 99, 1235 (1995).

    CAS  Article  Google Scholar 

  18. 18

    V. L. Orkin and V. G. Khamaganov, J. Atmos. Chem. 16, 169 (1993).

    CAS  Article  Google Scholar 

  19. 19

    C. Chiorboli, R. Piazza, M. L. Tosato, and V. Carassiti, Coord. Chem. Rev. 125, 241 (1993).

    CAS  Article  Google Scholar 

  20. 20

    S. P. Sander, L. M. Kurilo, V. L. Orkin, et al., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 15 (California Inst. Technol., Pasadena, CA, 2006).

  21. 21

    I. K. Larin, T. I. Belyakova, N. A. Messineva, A. I. Spasskii, and E. M. Trofimova, Kinet. Catal. 52, 513 (2011).

    CAS  Article  Google Scholar 

  22. 22

    R. D. Hudson, Can. J. Chem. 52, 1465 (1974).

    CAS  Article  Google Scholar 

  23. 23

    H. S. Johnsto, M. Paige, and F. Yao, J. Geophys. Res. 89, 661 (1984).

    Google Scholar 

  24. 24

    A. S. C. Cheung, K. Yoshino, W. H. Parkinson, and D. E. Freeman, Geophys. Res. Lett. 11, 580 (1984).

    CAS  Article  Google Scholar 

  25. 25

    A. S. C. Cheung, K. Yoshino, W. H. Parkinson, S. L. Guberman, and D. E. Freeman, Planet. Space Sci. 34, 1007 (1986).

    CAS  Article  Google Scholar 

  26. 26

    Yu-Ran Luom, Handbook of Bond Dissociation Energies in Organic Compounds (CRC, Boca Raton, FL, 2002), p. 158.

    Google Scholar 

  27. 27

    M. Szwarc and A. H. Sehon, J. Chem. Phys. 19, 656 (1951).

    CAS  Article  Google Scholar 

  28. 28

    N. N. Semenov, Chain Reactions (Nauka, Moscow, 1986; United Sci. Tech. Press, 1934).

  29. 29

    D. Gillotay, P. C. Simon, and L. Dierickx, Aeronom. Acta A 335, 1 (1988).

    Google Scholar 

  30. 30

    V. L. Orkin and E. E. Kasimovskaya, J. Atmos. Chem. 21, 1 (1995).

    CAS  Article  Google Scholar 

  31. 31

    W. Pence, S. Baughum, and S. Leone, J. Phys. Chem. 85, 3844 (1981).

    CAS  Article  Google Scholar 

  32. 32

    P. Zou, W. S. McGivern, O. Sokhabi, A. G. Suits, and S. W. North, J. Chem. Phys. 113, 7149 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to N. A. Messineva or E. M. Trofimova.

Additional information

Translated by V. Vetrov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larin, I.K., Belyakova, T.I., Messineva, N.A. et al. UV Photolysis in a C2H2F2Br2 Mixture with Oxygen. Russ. J. Phys. Chem. B 14, 893–898 (2020). https://doi.org/10.1134/S1990793120060238

Download citation

Keywords:

  • photolysis
  • troposphere
  • ozone
  • absorption spectra
  • absorption cross section