Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 17–27 | Cite as

Influence of Tetra Alkyl Ammonium Cation on Thermo-Physical Properties of N,N-Dimethyl Formamide with 1,4-Dioxane at Different Temperatures

  • Indu Saxena
  • Vijay Kumar
  • Rikkam Devi
Structure of Chemical Compounds. Spectroscopy
  • 14 Downloads

Abstract

Ultrasonic technique, transport properties and related acoustical parameters of 1,4-dioxane and N,N-dimethyl formamide were prepared of different % compositions at variable temperatures using tetra alkyl ammonium iodide salts (R4NI) of 0.14 M, to investigate inter-ionic interactions, molecular interactions, molecular rearrangement, molecular association etc. The densities were measured by using magnetic float densitometer. Transport properties provide a deep and meaningful insight of various interactions taking place between the binary liquid mixtures with salts. We have observed the influence of small as well as large alkyl chain length (R4N+), and extract the information with respect to various kinds of intermolecular interactions such as dipole-dipole, dipole-induced dipole, solute-solvent, dispersive type and H-bonding interaction between the components. Such observations in the presence of specific molecular interactions of binary solutions and structural effects were analyzed on the basis of measured and derived thermo-dynamical parameters.

Keywords

ion-solvent interactions 1,4-dioxane-N,N-dimethy formamide tetra alkyl ammonium cation hydrogen bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Gopal and S. C. Nath, Ind. J. Pure Appl. Phys. 48, 326 (2010).Google Scholar
  2. 2.
    M. N. Caro, J. L. Trenzado, S. Galván, E. Romano, E. González, R. Alcalde, and S. Aparicio, J. Chem. Eng. Data 58, 909 (2013).CrossRefGoogle Scholar
  3. 3.
    M. C. Grande, J. A. Julia, C. R. Barrero, and C. M. Marschoff, Phys. Chem. Liq. 51, 457 (2013).CrossRefGoogle Scholar
  4. 4.
    J. L. Trenzado, E. Romano, L. Segade, M. N. Caro, E. Gonzalez, and S. Galvan, J. Chem. Eng. Data 56, 2841 (2011).CrossRefGoogle Scholar
  5. 5.
    C. Wang, L. Zhu, and S. Han, Fluid Phase Equilib. 189, 129 (2001).CrossRefGoogle Scholar
  6. 6.
    G. Xu, X. Li, Y. Hu, Y. Wang, G. Fan, and M. Zhang, J. Chem. Eng. Data 55, 2345 (2010).CrossRefGoogle Scholar
  7. 7.
    S. S. Yadava and A. Yadav, Ind. J. Pure Appl. Phys. 42, 338 (2004).Google Scholar
  8. 8.
    L. Sarkar and M. N. Roy, J. Chem. Eng. Data 54, 3307 (2009).CrossRefGoogle Scholar
  9. 9.
    M. N. Roy, R. S. Sah, and P. Pradhan, Int. J. Thermophys. 31, 316 (2010).CrossRefGoogle Scholar
  10. 10.
    N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev. 37, 123 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Attri and P. Venkatesu, Phys. Chem. Chem. Phys. 13, 6566 (2011).CrossRefGoogle Scholar
  12. 12.
    M. J. Earle, J. Esperanca, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, and J. A. Widegren, Nature 439, 831 (2006).CrossRefGoogle Scholar
  13. 13.
    L. C. Henderson and N. Byrne, Green Chem. 13, 813 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Constantinescu, H. Weingartner, and C. Herrmann, Angew. Chem., Int. Ed. 46, 8887 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Attri, P. M. Reddy, and P. Venkatesu, Ind. J. Chem. A 49, 736 (2010)Google Scholar
  16. 16.
    P. Attri, P. M. Reddy, P. Venkatesu, A. Kumar, and T. Hofman, J. Phys. Chem. B 114, 6126 (2010).CrossRefGoogle Scholar
  17. 17.
    P. Attri, P. Venkatesu, and T. Hofman, J. Phys. Chem. B 115, 10086 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Tiwari and A. Kumar, Angew. Chem., Int. Ed. 45, 4824 (2006).CrossRefGoogle Scholar
  19. 19.
    J. A. Gallego-Juarez, Phys. Proc. 3, 35 (2010).CrossRefGoogle Scholar
  20. 20.
    M. Brigante and M. A. Sumbatyan, Russ. J. Nondestr. Test. 49, 100 (2013).CrossRefGoogle Scholar
  21. 21.
    S. J. Song, H. J. Shin, and Y. H. Jang, Nucl. Eng. Des. 214, 151 (2002).CrossRefGoogle Scholar
  22. 22.
    F. J. Trujillo, P. Juliano, G. Barbosa-Canovas, and K. Knoerzer, Ultrason. Sonochem. 21, 2151 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Y. Leal-Ramos, A. D. Alarcon-Rojo, T. J. Mason, L. Paniwnyk, and M. Alarjah, J. Sci. Food Agric. 91, 130 (2011).CrossRefGoogle Scholar
  24. 24.
    L. Helmdach, M. P. Feth, and J. Ulrich, Org. Process Res. Dev. 19, 110 (2015).CrossRefGoogle Scholar
  25. 25.
    N. Y. Mokshina, O. A. Pakhomova, and S. I. Niftaliev, Russ. J. phys. Chem. A 81, 1851 (2007).CrossRefGoogle Scholar
  26. 26.
    S. D. Zade, Rasayan J. Chem. 4, 620 (2011).Google Scholar
  27. 27.
    J. Liu, P. Liu, X. Zhang, D. Pan, P. Zhang, and M. Zhang, Ultrason. Sonochem. 23, 46 (2015).CrossRefGoogle Scholar
  28. 28.
    H. S. Frank, J. Phys. Chem. 67, 1554 (1963).CrossRefGoogle Scholar
  29. 29.
    R. N. Pathak, I. Saxena, Archna, R. Kumar, and N. Singh, Trans. Faraday Soc. 3, 87 (2014).Google Scholar
  30. 30.
    R. N. Pathak, I. Saxena, Archna, and A. K. Mishra, Ind. Council Chem. 26, 170 (2009).Google Scholar
  31. 31.
    P. S. Nikam, N. Nikam, Hasan, and A. R. Hiray, Asian J. Chemy. 7, 500 (1995).Google Scholar
  32. 32.
    H. Eyring and J. F. Kincaid, J. Chem. Phys. 6, 620 (1938).CrossRefGoogle Scholar
  33. 33.
    G. J. Price and P. F. Smith, Eur. Polym. J. 29, 419 (1993).CrossRefGoogle Scholar
  34. 34.
    R. N. Pathak and I. Saxena, Ind. J. Eng. Mater. Sci. 5, 278 (1998).Google Scholar
  35. 35.
    B. E. Conway, R. E. Verrall, and J. E. Desnoyers, Trans Faraday Soc. 62, 2738 (1966). doi 10.1039/TF9666202738CrossRefGoogle Scholar
  36. 36.
    H. Eyring and J. F. Kincaid, J. Chem. Phys. 6, 620 (1938).CrossRefGoogle Scholar
  37. 37.
    V. K. Syal, U. Kumari, S. Chauhan, and M. S. Chauhan, Ind. J. Pure Appl. Phys. 30, 719 (1992).Google Scholar
  38. 38.
    S. Kalyanasundaram, A. M. Stephan, and A. Gopalan, J. Polym. Mater. 12, 323 (1995).Google Scholar
  39. 39.
    W. Wei and N. D. Danielson, Biomacromolecules 12, 290 (2011).CrossRefGoogle Scholar
  40. 40.
    A. Ali and A. K. Nain, J. Pure Appl. Ultrason. 22, 10 (2000).Google Scholar
  41. 41.
    K. Granados and J. G. Fredrique, J. Chem. Eng. Data 51, 1473 (2006).CrossRefGoogle Scholar
  42. 42.
    N. D. Khupse and A. Kumar, J. Phys. Chem. B 114, 376 (2010).CrossRefGoogle Scholar
  43. 43.
    V. K. Syal, V. Bhalla, and S. Chauhan, Acustica 81, 276 (1995).Google Scholar
  44. 44.
    P. Attri and P. Venkatesu, Process Biochem. 48, 462 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Prabakar and K. Rajagopal, J. Pure Appl. Ultrason. 27, 41 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LucknowLucknowIndia

Personalised recommendations