Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 58–66 | Cite as

Heterogeneous Photocatalytic Oxidation of Pollutants in Air on TiO2 Particles

  • I. V. Kumpanenko
  • A. V. Roschin
  • N. A. Ivanova
  • E. I. Zelenina
  • T. C. Volchenko
  • E. O. Panin
Kinetics and Mechanism of Chemical Reactions. Catalysis
  • 2 Downloads

Abstract

A semiempirical method has been developed for analyzing the mechanism of heterogeneous reactions based on the Langmuir–Hinshelwood kinetic model modified using the first- order double-exponential decay approach. The method proved useful for describing the kinetics of photocatalytic oxidation (PCO) on TiO2 particles in air for a wide range of substances: ketones, organophosphorus compounds, alkyl sulfides, and chlorinated hydrocarbons. The range of substances can certainly be considerably expanded. An equation of implicit function was derived that describes the kinetics of heterogeneous PCO of the zeroth, first, and intermediate (between the zeroth and first) orders. Approximation of the experimental time dependence of concentration using this equation makes it possible to determine the reaction order including the intermediate one, the characteristic decay time of the substance, and the fraction of the exponential components in the kinetic equation. This semiempirical method was used for processing both the original experimental data obtained in the present study and the literature data. The time dependences of trichloroethylene (TCE) concentrations in a closed space during the heterogeneous PCO on TiO2 aerosol catalyst particles were studied using a specially designed unit. The catalytic activity increased with the aerosol concentration C as : at C as = 10.23, 14.17, and 19.85 g/m3, 90% purification of air from TCE was reached in 8.5, 5.0, and 1.5 min, respectively.

Keywords

heterogeneous reactions photocatalytic oxidation heterogeneous catalysis TiO2 aerosol particles photocatalytic oxidation of trichloroethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. I. Khan and A. K. Ghoshal, J. Loss Prev. Process Ind. 13, 527 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Mofidi, H. Asilian, and A. J. Jafari, Health Scope 2, 84 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Aguado, A. C. Polo, M. P. Bernal, J. Coronas, and J. Santamarıa, J. Membr. Sci. 240, 159 (2004).CrossRefGoogle Scholar
  4. 4.
    M. Tokumura, Y. Wadab, Y. Usami, et al., Chemosphere 89, 1238 (2012).CrossRefGoogle Scholar
  5. 5.
    E. Sahle-Demessie and V. G. Devulapelli, Appl. Catal., A 361, 72 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Everaert and J. Baeyens, J. Hazard. Mater. B 109, 113 (2004).CrossRefGoogle Scholar
  7. 7.
    Y. Liu, X. Feng, and D. Lawless, J. Membr. Sci. 271, 114 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Lau, K. Groody, A. Chan, and G. Ragib, Pulp Pap. Can. 107, 57 (2006).Google Scholar
  9. 9.
    T. P. Kumar, M. Rahul, and B. Chandrajit, Res. J. Chem. Sci. 1, 83 (2011).Google Scholar
  10. 10.
    Y. Huang, S. S. H. Ho, Y. Lu, R. Niu, L. Xu, J. Cao, and Sh. Lee, Molecules 21, 1 (2016).Google Scholar
  11. 11.
    S. O. Hay, T. Obee, Z. Luo, T. Jiang, et al., Molecules 20, 13196 (2015).CrossRefGoogle Scholar
  12. 12.
    R. Thiruvenkatachari, S. Vigneswaran, and I. S. Moon, Korean J. Chem. Eng. 25 64 (2008).Google Scholar
  13. 13.
    M. Hunger, G. Hüsken, and H. J. H. Brouwers, Cem. Concr. Res. 40, 313 (2010).CrossRefGoogle Scholar
  14. 14.
    J.-M. Herrmann, Catal. Today 53, 115 (1999).CrossRefGoogle Scholar
  15. 15.
    A. K. Sarmah and M. E. Close, J. Environ. Sci. Health, Pt. B 44, 507 (2009).CrossRefGoogle Scholar
  16. 16.
    A. K. Sarmah and M. Rohan, J. Environ. Monit. 13, 157 (2011).CrossRefGoogle Scholar
  17. 17.
    S. I. Kabanikhin, D. A. Voronov, A. A. Grodz’, and O. I. Krivorot’ko, Vavilov. Zh.Genet. Selek. 19, 738 (2015).Google Scholar
  18. 18.
    D. I. Gustafson and L. R. Holden, Environ. Sci. Technol. 24, 1032 (1990).CrossRefGoogle Scholar
  19. 19.
    K. Banerjee, D. P. Oulkar, S. H. Patil, S. Dasgupta, and P. G. Adsule, Pest Manage. Sci. 64, 283 (2008).CrossRefGoogle Scholar
  20. 20.
    E. Torabi and K. Talebi, J. Environ. Sci. Health, Pt. B 48, 260 (2013).CrossRefGoogle Scholar
  21. 21.
    T. Maggos, P. Leva, J. G. Bartzis, C. Vasilakos, and D. Kotzias, WIT Trans. Ecol. Environ. 101, 585 (2007).Google Scholar
  22. 22.
    G. Cui, Y. Xin, X. Jiang, M. Dong, et al., Int. J. Mol. Sci. 16, 27721 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Ku, C.-M. Ma, and Y.-S. Shen, Appl. Catal., B 34, 181 (2001).CrossRefGoogle Scholar
  24. 24.
    A. S. Besov, N. A. Krivova, A. V. Vorontsov, et al., J. Hazard. Mater. 173, 40 (2010).CrossRefGoogle Scholar
  25. 25.
    A. S. Besov, A. V. Vorontsov, and V. N. Parmon, Appl. Catal., B 89, 602 (2009).CrossRefGoogle Scholar
  26. 26.
    A. V. Vorontsov, A. S. Besov, and V. N. Parmon, Appl. Catal., B 129, 318 (2013).CrossRefGoogle Scholar
  27. 27.
    A. V. Vorontsov, E. N. Savinov, G. B. Barannik, V. N. Troitsky, and V. N. Parmon, Catal. Today 39, 207 (1997).CrossRefGoogle Scholar
  28. 28.
    N. Gonzalez-Garcia, J. A. Ayllon, X. Domenech, and J. Peral, Appl. Catal., B 52, 69 (2004).CrossRefGoogle Scholar
  29. 29.
    A. B. Vorozhtsov, V. A. Arkhipov, A. V. Vorontsov, V. N. Parmon, et al., RF Patent No. 2450851, Byull. Izobret. No. 24 (2011). http://www.fips.ru.Google Scholar
  30. 30.
    I. V. Kumpanenko, A. V. Roshchin, A. V. Bloshenko, N. A. Sakharova, and N. A. Ivanova, Russ. J. Phys. Chem. B 9, 658 (2015).CrossRefGoogle Scholar
  31. 31.
    Yu. A. Mazalov, I. V. Kumpanenko, A. V. Roshchin, A. V. Merenov, and T. V. Grinevich, RF Patent No. 2254314, Byull. Izobret. No. 17 (2005). http://www.fips.ruGoogle Scholar
  32. 32.
    E. V. Shinkevich, R. Tifentaler, and L. O. Root, in Proc. of the 9th International Conference of Students and Young Scientists on Perspectives of Fundamental Sciences Development, Tomsk, Russia, 2012, p. 518.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Kumpanenko
    • 1
  • A. V. Roschin
    • 1
  • N. A. Ivanova
    • 1
  • E. I. Zelenina
    • 1
  • T. C. Volchenko
    • 1
  • E. O. Panin
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations