Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 46–52 | Cite as

Kinetics of the aza-Michael Reaction at Room Temperature

  • E. V. Koverzanova
  • I. I. Levina
  • A. A. Gridnev
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

The rates of the aza-Michael reaction at room temperature were measured for some amines and alkenes. When the reaction mixture was diluted with methanol, the reaction was accelerated. The acceleration with methanol was especially strong for acrylonitrile. In the latter case, the reaction rate constant can increase by almost three decimal orders. The bulky substituent in the alpha position of methacrylates had little effect on the reaction rate, while the bulky substituent in the ester group significantly slowed the aza-Michael reaction.

Keywords

aza-Michael reaction amine alkene reaction rate transition state catalysis methanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Rulev, Russ. Chem. Rev. 80, 197 (2011).CrossRefGoogle Scholar
  2. 2.
    G. Cravotto, Y. Borretto, M. Oliverio, A. Procopio, and A. Penoni, Catal. Commun. 63, 2 (2015).CrossRefGoogle Scholar
  3. 3.
    L. W. Xu, L. Li, and C. G. Xi, Helv. Chim. Acta 1, 522 (2004).Google Scholar
  4. 4.
    T. P. Loh and L. L. Wei, Synlett, No. 6, 975 (1998).CrossRefGoogle Scholar
  5. 5.
    S. Kim, S. Kang, G. Kim, and Y. Lee, Org. Chem. 81, 4048 (2016).CrossRefGoogle Scholar
  6. 6.
    O. V. Serdyuk, C. M. Heckel, and S. Tsogoeva, Org. Biomol. Chem. 11, 7051 (2013).CrossRefGoogle Scholar
  7. 7.
    P. Chauhan, S. Mahajan, and D. Enders, Chem. Commun. 51, 12890 (2015).CrossRefGoogle Scholar
  8. 8.
    K. K. Hii, Pure Appl. Chem. 78, 341 (2006).CrossRefGoogle Scholar
  9. 9.
    G. Xu, T. Buechler, K. Wheeler, and H. Wang, Eur. J. 16, 2972 (2010).CrossRefGoogle Scholar
  10. 10.
    X. F. Wang, J. An, X. X. Zhang, et al., Org. Lett. 13, 808 (2011).CrossRefGoogle Scholar
  11. 11.
    B. L. Zhao, Y. Lin, H. H. Yan, and D. M. Du, Biomol. Chem. 13, 11351 (2015).CrossRefGoogle Scholar
  12. 12.
    B. C. Ranu and S. Banerjee, Tetrahedron Lett. 48, 141 (2007).CrossRefGoogle Scholar
  13. 13.
    Z. Feng, Q. L. Xu, L. X. Dai, and S. L. You, Heterocycles 80, 765 (2010).CrossRefGoogle Scholar
  14. 14.
    S. Matsubara, M. Yoshioka, and K. Utimoto, Chem. Lett. 23, 827 (1994).CrossRefGoogle Scholar
  15. 15.
    V. L. Plakidin and P. P. Gnatyuk, Zh. Org. Khim. 9, 167 (1973).Google Scholar
  16. 16.
    A. A. Gridnev, Polym. J. 24, 613 (1992).CrossRefGoogle Scholar
  17. 17.
    A. J. Gordon and R. A. Ford, The Chemist’s Companion: A Handbook of Practical Data, Techniques and References (Mir, Moscow, 1975; Wiley, New York, 1972), rus. p. 167.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Koverzanova
    • 1
  • I. I. Levina
    • 2
  • A. A. Gridnev
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations