Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 172–178 | Cite as

Structure and Properties of Nanosized Composites Based on Fe3O4 and Humic Acids

  • A. I. Kokorin
  • L. S. Kulyabko
  • E. N. Degtyarev
  • A. L. Kovarskii
  • S. V. Patsaeva
  • G. I. Dzhardimalieva
  • A. A. Yurishcheva
  • K. A. Kydralieva
Chemical Physics of Nanomaterials


Nanocrystalline composite materials based on magnetite Fe3O4 and humic acids (HA) were synthesized and characterized. Investigation of these materials by EPR, fluorescence spectroscopy, electron microscopy, and XRD analysis showed that the surface of magnetite nanoparticles was densely covered with HA molecules, the size of the Fe3O4 nucleus decreasing when the HA : Fe3O4 ratio increased. An EPR study showed that the structure of the ferromagnetic magnetite nanoparticles changed at increased HA contents. The IR and fluorescence spectroscopy data suggest active participation of carboxyl and hydroxyl groups of HA in the adsorption of HAs on the Fe3O4 surface. The main types of interaction of Fe3O4 with HA were considered, and a scheme of possible chemical reactions was proposed.


nanocomposites magnetite humic acids electron microscopy acoustic spectrometry EPR fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Yuan, S. P. Armes, Y. Takabayashi, et al., Langmuir 22, 10989 (2006).CrossRefGoogle Scholar
  2. 2.
    S. Laurent, D. Forge, M. Port, et al., Chem. Rev. 108, 2064 (2008).CrossRefGoogle Scholar
  3. 3.
    M. A. Hood, M. Mari, and R. Muñoz-Espí, Materials 7, 4057 (2014).CrossRefGoogle Scholar
  4. 4.
    R. Tong, Y. Wang, G. Yang, et al., Afr. J. Chem. 68, 99 (2015).Google Scholar
  5. 5.
    M. F. Tai, C. W. Lai, and S. B. Abdul-Hamid, J. Nanomaterials 2016, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    B. Chertok, A. E. David, and V. C. Yang, J. Control. Release 155, 393 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Leitgeb, Ž. Knez, and K. Vasić, in Micro and Nanotechnologies for Biotechnology, Ed. by S. G. Stanciu (InTech, Rijeka, 2016). doi 10.5772/63129Google Scholar
  8. 8.
    A. Y. Gervald, I. A. Gritskova, and N. I. Prokopov, Russ. Chem. Rev. 79, 219 (2010).CrossRefGoogle Scholar
  9. 9.
    A. Ngomsik, A. Bee, M. Draye, G. Cote, and V. Cabuil, C. R. Chim. 8, 963 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Szekeres, E. Illés, C. Janko, et al., J. Nanomed. Nanotechnol. 5, 252 (2015).Google Scholar
  11. 11.
    K. A. Kydralieva, G. I. Dzhardimalieva, A. A. Yurishcheva, et al., J. Inorg. Organomet. Polym. 26, 1212 (2016).CrossRefGoogle Scholar
  12. 12.
    D. M. Singer, S. M. Chatman, E. S. Ilton, et al., Environ. Sci. Technol. 46, 3821 (2012).CrossRefGoogle Scholar
  13. 13.
    C. T. Yavuz, J. T. Mayo, W. W. Yu, et al., Science 314, 964 (2006).CrossRefGoogle Scholar
  14. 14.
    L.-Sh. Zhong, J.-S. Hu, H.-P. Liang, et al., Adv. Mater. 18, 2426 (2006).CrossRefGoogle Scholar
  15. 15.
    Z. Bujñáková, E. Turianicová, and P. Baláž, Acta Montan. Slovaca 17, 137 (2012).Google Scholar
  16. 16.
    A. H. Meena and Y. Arai, Geochem. Trans. 17, 1 (2016).CrossRefGoogle Scholar
  17. 17.
    I. M. Ahmed, R. Gamal, A. A. Helal, et al., Part. Sci. Technol. 2016, 1 (2016). doi 10.1080/02726351.2016.1192572Google Scholar
  18. 18.
    A. Bar-Shir, L. Avram, S. Yariv-Shoushan, et al., NMR Biomed. 27, 774 (2014).CrossRefGoogle Scholar
  19. 19.
    C. Saikia, A. Hussain, A. Ramteke, et al., Starch/Staerke 66, 760 (2014).CrossRefGoogle Scholar
  20. 20.
    L. M. Lacava, Z. G. M. Lacava, M. F. da Silva, et al., Biophys. J. 80, 2483 (2001).CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, N. Kohler, and M. Zhang, Biomaterials 23, 1553 (2002).CrossRefGoogle Scholar
  22. 22.
    L. F. Gamarra, G. E. S. Brito, W. M. Pontuschka, et al., J. Magn. Magn. Mater. 289, 439 (2005).CrossRefGoogle Scholar
  23. 23.
    C. C. Berry, S. Wells, S. Charles, and A. S. G. Curtis, Biomaterials 24, 4551 (2003).CrossRefGoogle Scholar
  24. 24.
    H. Bai, Z. Liu, and D. D. Sun, Sep. Purif. Technol. 81, 392 (2011).CrossRefGoogle Scholar
  25. 25.
    J. Hradil, A. Pisarev, M. Babič, and D. Horák, China Particuol. 5, 162 (2007).CrossRefGoogle Scholar
  26. 26.
    N. S. Remya, S. Syama, A. Sabareeswaran, et al., Int. J. Pharm. 511, 586 (2016).CrossRefGoogle Scholar
  27. 27.
    A. D. Pomogailo, K. A. Kydralieva, A. A. Zaripova, et al., Macromol. Sym 304, 18.Google Scholar
  28. 28.
    A. A. Yurishcheva, K. A. Kydralieva, A. A. Zaripova, et al., J. Biol. Phys. Chem. 13, 61 (2013).CrossRefGoogle Scholar
  29. 29.
    A. A. Yurishcheva, G. P. Fetisov, G. I. Dzhardimalieva, et al., Tekhnol. Met., No. 8, 27 (2011).Google Scholar
  30. 30.
    G. J. Lawson and D. Stewart, in Humic Substances II. Search of Structure, Ed. by M. H. B. Hayes, P. MacCarthy, R. L. Malcolm (Wiley, Chichester, 1989).Google Scholar
  31. 31.
    F. J. Stevenson, Humic Chemistry: Genesis, Composition, Reactions (Wiley, New York, 1994).Google Scholar
  32. 32.
    E. Ills and E. Tombacz, J. Colloid Interface Sci. 295, 115 (2006).CrossRefGoogle Scholar
  33. 33.
    N. Noginova, F. Chen, T. Weaver, et al., J. Phys.: Condens. Matter 19, 246208 (2007).Google Scholar
  34. 34.
    S. Watanabe, S. Akutagawa, K. Sawada, et al., Mater. Trans. 50, 2187 (2009).CrossRefGoogle Scholar
  35. 35.
    S. V. Yurtaeva, V. N. Efimov, G. G. Yafarova, et al., Appl. Magn. Reson. 47, 555 (2016).CrossRefGoogle Scholar
  36. 36.
    Ferromagnetic Resonance -Theory and Applications, Ed. by O. Yaln (InTech, Rijeka, 2013).Google Scholar
  37. 37.
    M. M. Noginov, N. Noginova, O. Amponsah, et al., J. Magn. Magn. Mater. 320, 2228 (2008).CrossRefGoogle Scholar
  38. 38.
    N. Guskos, G. Zolnierkiewicz, J. Typek, et al., Rev. Adv. Mater. Sci. 23, 113 (2010).Google Scholar
  39. 39.
    N. Guskos, J. Typek, G. Zolnierkiewicz, et al., Mater. Sci.-Pol. 24, 983 (2006).Google Scholar
  40. 40.
    S. Burikov, T. Dolenko, N. Gorbunova, et al., in Functions of Natural Organic Matter in Changing Environment, Ed. by J. Xu, J. Wu, and Y. He (Zhejiang Univ. Press, Springer, Dordrecht, 2013), p. 799.Google Scholar
  41. 41.
    B. Gu, J. Schmitt, Z. Chen, et al., Environ. Sci. Technol. 28, 38 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Kokorin
    • 1
  • L. S. Kulyabko
    • 2
  • E. N. Degtyarev
    • 1
    • 3
  • A. L. Kovarskii
    • 3
  • S. V. Patsaeva
    • 4
  • G. I. Dzhardimalieva
    • 2
    • 5
  • A. A. Yurishcheva
    • 2
  • K. A. Kydralieva
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation Institute (National Research University)MoscowRussia
  3. 3.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia
  5. 5.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations