Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 67–76 | Cite as

Analytical Study of Hydrodynamic Instability in the Flame: 2. Account of the Viscosity of the Gas in the Cold and Hot Areas

  • K. O. Sabdenov
  • K. E. Sakipov
  • M. Erzada
  • S. A. Kasimova
Combustion, Explosion, and Shock Waves
  • 9 Downloads

Abstract

Hydrodynamic instability is examined with consideration given to the viscosity of the fresh gas and combustion products, as well as to the dependences of the flame speed on the front curvature and of the transport coefficients on the temperature. For the perturbation frequency, an approximate second-order dispersion equation is derived. The flame is completely stable at very high viscosity or small dimensions. The greatest destabilizing role of the thermal expansion coefficient manifests itself at its relatively small values. As the expansion coefficient increases, the viscosity of the gas in the flame zone increases rapidly. In addition, the stabilizing effect according to the Markstein model is enhanced by thermal expansion.

Keywords

flame hydrodynamic instability Markstein constant gas viscosity thermal expansion coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. S. Mannaa, M. S. Mansour, W. L. Roberts, and S. H. Chung, Combust. Flame 162, 2311 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Schlimperta, S. Hemchandrab, M. Meinkea, et al., Combust. Flame 162, 345 (2015).CrossRefGoogle Scholar
  3. 3.
    K. Oberleithner, S. Schimek, and Ch. O. Paschereit, Combust. Flame 162, 86 (2015).CrossRefGoogle Scholar
  4. 4.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 14, 240 (1944).Google Scholar
  5. 5.
    G. Darrieus, Work, presented at La Technique Moderne, Paris, 1938, unpublished.Google Scholar
  6. 6.
    G. H. Markstein, Non-Steady Flame Propagation (Mac-Millan, New York, 1964).Google Scholar
  7. 7.
    K. O. Sabdenov, Russ. J. Phys. Chem. B 11 (2017, in press).Google Scholar
  8. 8.
    L. P. Kholpanov and V. Ya. Shkadov, Hydrodynamics and Heat and Mass Exchange with Interface (Nauka, Moscow, 1990) [in Russian].Google Scholar
  9. 9.
    W. H. Dorrance, Viscous Hypersonic Flow: Theory of Reacting and Hypersonic Boundary Layers, Dover Books on Engineering (Dover, New York, 2017).Google Scholar
  10. 10.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).Google Scholar
  11. 11.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, et al., Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Plenum, New York, 1985).Google Scholar
  12. 12.
    G. Joulin and P. Vidal, Hydrodynamics and Nonlinear Instabilities, Ed. by C. Godrèche and P. Manneville (Cambridge Univ. Press, Cambridge, 1998).Google Scholar
  13. 13.
    M. Matalon, Ann. Rev. Fluid Mech. 39, 63 (2007).CrossRefGoogle Scholar
  14. 14.
    P. Pelce and P. Clavin, J. Fluid Mech. 124 (2), 19 (1982).Google Scholar
  15. 15.
    M. Matalon and B. J. Matkowsky, J. Fluid Mech. 124, 39 (1982).CrossRefGoogle Scholar
  16. 16.
    M. Matalon and B. J. Matkowsky, SIAM J. Appl. Math. 44 (3), 27 (1984).Google Scholar
  17. 17.
    M. L. Frankel and G. I. Sivashinsky, Combust. Sci. Technol. 29 (2), 7 (1982).Google Scholar
  18. 18.
    B. Denet and P. Haldenwang, Combust. Sci. Technol. 104, 143 (1995).CrossRefGoogle Scholar
  19. 19.
    S. Kadowaki, Phys. Fluids 11, 3426 (1999).CrossRefGoogle Scholar
  20. 20.
    S. Kadowaki, Phys. Fluids 12, 2352 (2000).CrossRefGoogle Scholar
  21. 21.
    G. J. Sharpe and S. A. E. G. Falle, Combust. Theory Model. 10, 483 (2006).CrossRefGoogle Scholar
  22. 22.
    M. M. Alekseev, V. P. Samsonov, and O. Yu. Semenov, Tech. Phys. Lett. 39, 435 (2013).CrossRefGoogle Scholar
  23. 23.
    M. M. Alekseev, M. V. Alekseev, V. P. Samsonov, and O. Yu. Semenov, Tech. Phys. 59, 52 (2014).CrossRefGoogle Scholar
  24. 24.
    G. Sivahshinsky, Acta Astronaut. 4, 1177 (1977).CrossRefGoogle Scholar
  25. 25.
    L. Filyand, G. T. Sivahshinsky, and M. L. Francel, Phys. D 72, 110 (1994).CrossRefGoogle Scholar
  26. 26.
    S. S. Minaev and V. S. Babkin, Fiz. Goreniya Vzryva 23 (2), 49 (1987).Google Scholar
  27. 27.
    S. M. Ignat’ev and Yu. I. Petukhov, Fiz. Goreniya Vzryva 25 (5), 58 (1989).Google Scholar
  28. 28.
    M. Matalon, in Major Research Topics in Combustion, Ed. by M. Y. Hussaini, A. Kumar, and R. G. Voigt (Springer, Berlin, 1992).Google Scholar
  29. 29.
    E. Hu, J. Fu, L. Pan, X. Jiang, et al., Int. J. Hydrogen Energy 37, 18509 (2012).CrossRefGoogle Scholar
  30. 30.
    J. Wang, M. Zhang, Y.-L. Xie, et al., Exp. Thermal Fluid Sci. 50, 90 (2013).CrossRefGoogle Scholar
  31. 31.
    K. O. Sabdenov and Maira Erzada, Combust. Explos., Shock Waves 49, 273 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. O. Sabdenov
    • 1
  • K. E. Sakipov
    • 2
  • M. Erzada
    • 2
  • S. A. Kasimova
    • 1
  1. 1.Kozybaev North Kazakhstan State UniversityPetropavlovskKazakhstan
  2. 2.Eurasian National UniversityAstanaKazakhstan

Personalised recommendations