Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 1–9 | Cite as

Relativistic Jahn–Teller Effect for Triplet States of Tetrahedral Molecular Complexes

  • V. I. Osherov
  • L. V. Poluyanov
  • V. G. Ushakov
Elementary Physicochemical Processes
  • 16 Downloads

Abstract

A relativistic multimode Jahn−Teller effect for tetrahedral molecular complexes in a triplet electronic state is considered. The analysis is based on the symmetry properties of the electronic Hamiltonian and its generalized symmetry operators, acting on both the coordinates (spatial operations) and spins (matrix operations) of the electrons. As a result, a 9 × 9 vibronic matrix that includes the vibronic coupling constants of orbital and spin-orbital nature and depends on the five normal modes of t2 and e symmetry has been obtained.

Keywords

relativistic Jahn−Teller effect vibronic Hamiltonian symmetry group electronic basis of spin-orbitals vibronic coupling constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Osherov and L. V. Poluyanov, Khim. Fiz. 17 (11), 3 (1998).Google Scholar
  2. 2.
    V. I. Osherov, L. V. Poluyanov, and V. G. Ushakov, Khim. Fiz. 17 (12), 3 (1998).Google Scholar
  3. 3.
    S. Mishra, L. V. Poluyanov, and W. Domcke, J. Chem. Phys. 126, 134312 (2007).CrossRefGoogle Scholar
  4. 4.
    L. V. Poluyanov and W. Domcke, Chem. Phys. 352, 125 (2008).CrossRefGoogle Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974, 3th ed.; Pergamon, New York, 1977, 3rd ed.).Google Scholar
  6. 6.
    M. Hammermesh, Group Theory (Addison-Wesley, Massachusetts, London, 1964).Google Scholar
  7. 7.
    P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic, New York, London, 1979).Google Scholar
  8. 8.
    I. Sioutis, S. Mishra, L. V. Poluyanov, and W. Domcke, J. Chem. Phys. 128, 124318 (2008).CrossRefGoogle Scholar
  9. 9.
    E. P. Wigner, Group Theory (Academic, New York, London, 1959).Google Scholar
  10. 10.
    W. Miller, Symmetry and Separation of Variables (Addison-Wesley, London, Tokyo, 1977).Google Scholar
  11. 11.
    L. V. Poluyanov and W. Domcke, Adv. Ser. Phys. Chem. 17, 117 (2011).Google Scholar
  12. 12.
    R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics (Academic, New York, London, 1969).Google Scholar
  13. 13.
    S. Mishra, V. Vallet, L. V. Poluyanov, and W. Domcke, J. Chem. Phys. 125, 164327 (2006).CrossRefGoogle Scholar
  14. 14.
    D. Opalka, M. Segado, L. V. Poluyanov, and W. Domcke, Phys. Rev. A 81, 042501 (2010).CrossRefGoogle Scholar
  15. 15.
    L. V. Poluyanov and W. Domcke, Springer Ser. Chem. Phys. 97, 77 (2009).CrossRefGoogle Scholar
  16. 16.
    W. Domcke, D. Opalka, and L. V. Poluyanov, J. Chem. Phys. 144, 124101 (2016).CrossRefGoogle Scholar
  17. 17.
    K. G. Dyall and K. Faegri, Relativistic Quantum Chemistry (Oxford Univ. Press, Oxford, 2007).Google Scholar
  18. 18.
    P. Mondal, D. Opalka, L. V. Poluyanov, and W. Domcke, Chem. Phys. 387, 56 (2011).CrossRefGoogle Scholar
  19. 19.
    D. Opalka, L. V. Poluyanov, and W. Domcke, J. Chem. Phys. 135, 104108 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Osherov
    • 1
  • L. V. Poluyanov
    • 1
  • V. G. Ushakov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations