Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 10–16 | Cite as

Spectral-Fluorescent Properties of Supramolecular Systems Based on Chlorin e6

  • I. V. Klimenko
  • A. V. Lobanov
Structure of Chemical Compounds. Spectroscopy
  • 11 Downloads

Abstract

The spectral-fluorescent properties of various supramolecular systems based on chlorin e6 (Ce6) are determined to facilitate the development of new medicines for photodynamic therapy and diagnostics. The effect of various excipients, such as poly-N-vinylpyrrolidone (PVP), polyethylene glycol (PEG), bovine serum albumin (BSA), chitosan, Triton X-100 (TX-100), sodium hexametaphosphate (SHMP), and poly(dimethyldiallylammonium chloride) chloride (PDDAC), on the optical absorption and fluorescence of Ce6 is demonstrated. In the Ce6−PVP, Ce6−PEG, Ce6−BSA, Ce6−TX-100, Ce6−SHMP, and Ce6−PDDAC systems, Ce6 molecules are disaggregated and complexes thereof with excipients are formed. The quantum yield of Ce6 fluorescence in supramolecular systems is close to that of the free-form photosensitizer, in the absence of excipients. The results suggest that supramolecular complexes of Ce6 are promising for the development of medicines with controllable photodynamic activity.

Keywords

chlorin e6 supramolecular systems spectral-fluorescent properties molecular aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Shlyakhtin and T. V. Trukhacheva, Vestn. Farmats., No. 2 (48), 87 (2010).Google Scholar
  2. 2.
    E. Zenkevich, E. Sagun, V. Knyukshto, et al., J. Photochem. Photobiol. B 33, 171 (1996).CrossRefGoogle Scholar
  3. 3.
    M. V. Parkhats, V. A. Galievsky, A. S. Stashevsky, T. V. Trukhacheva, and B. M. Dzhagarov, Opt. Spectrosc. 107, 974 (2009).CrossRefGoogle Scholar
  4. 4.
    R. Bonett, Chem. Soc. Rev. 24, 19 (1995).CrossRefGoogle Scholar
  5. 5.
    A. F. Mironov, Soros. Obrazov. Zh., No. 8, 32 (1996).Google Scholar
  6. 6.
    W. Alian, S. Andersson-Engels, K. Svanberg, et al., Br. J. Cancer 70, 880 (1994).CrossRefGoogle Scholar
  7. 7.
    H. Podbielska, A. Ulatowska-Jarza, G. Muller, et al., Biomol. Eng. 24, 425 (2007).CrossRefGoogle Scholar
  8. 8.
    A. B. Uzdenskii, Cellular and Molecular Mechanisms of Photodynamic Therapy (Nauka, St. Petersburg, 2010) [in Russian].Google Scholar
  9. 9.
    R. M. Salmin, A. A. Sten’ko, I. G. Zhuk, et al., Nov. Khirurg. 16, 155 (2008).Google Scholar
  10. 10.
    A. V. Lobanov, S. N. Kholuiskaya, and G. G. Komissarov, Dokl. Phys. Chem. 399, 266 (2004).CrossRefGoogle Scholar
  11. 11.
    A. V. Lobanov, E. N. Golubeva, E. M. Zubanova, and M. Ya. Mel’nikov, High Energy Chem. 43, 384 (2009).CrossRefGoogle Scholar
  12. 12.
    A. V. Lobanov, E. N. Golubeva, and M. Ya. Mel’nikov, Mendeleev Commun. 20, 343 (2010).CrossRefGoogle Scholar
  13. 13.
    E. V. Pinyaskina, Izv. DGPU, No. 1, 60 (2010).Google Scholar
  14. 14.
    J. Bommer, Z. J. Sveida, and B. F. Burnham, in Proceedings of the 1st International Conference on Clinical Applications of Photosensitization for Diagnosis and Treatment, Tokyo, Japan, 1986, p. 129.Google Scholar
  15. 15.
    V. N. Kapinus, Yu. S. Romanko, M. A. Kaplan, et al., Ros. Bioterapevt. Zh. 4 (3), 69 (2005).Google Scholar
  16. 16.
    V. A. Borisov, G. V. Ponomarev, and V. I. Dernovskii, RF Patent No. 2276976, Byull. Izobret. No. 26 (2009).Google Scholar
  17. 17.
    E. G. Vakulovskaya, A. V. Reshetnikov, I. D. Zalevskii, and Yu. V. Kemov, Ros. Bioterapevt. Zh. 3 (1), 77 (2004).Google Scholar
  18. 18.
    P. T. Petrov, V. M. Tsarenkov, A. P. Meshcheryakova, et al., Rep. Belarus Patent No. 5651 (1999).Google Scholar
  19. 19.
    P. Petrov, T. Trukhacheva, H. Isakau, et al., German Patent Application No. DE10316566 (2003).Google Scholar
  20. 20.
    R. W. Boyle and D. H. Dolphin, Photochem. Photobiol. 64, 469 (1996).CrossRefGoogle Scholar
  21. 21.
    T. G. Rudenko, A. B. Shekhter, A. E. Guller, et al., Photochem. Photobiol. 90, 1413 (2014).CrossRefGoogle Scholar
  22. 22.
    A. V. Lobanov, G. A. Gromova, Yu. G. Gorbunova, and A. Yu. Tsivadze, Prot. Met. Phys. Chem. Surf. 50, 570 (2014).CrossRefGoogle Scholar
  23. 23.
    A. V. Lobanov, N. A. Rubtsova, Yu. A. Vedeneeva, and G. G. Komissarov, Dokl. Chem. 421, 190 (2008).CrossRefGoogle Scholar
  24. 24.
    N. B. Sul’timova, P. P. Levin, A. V. Lobanov, and A. M. Muzafarov, High Energy Chem. 47, 98 (2013).CrossRefGoogle Scholar
  25. 25.
    A. V. Chudinov, V. D. Rumyantseva, A. V. Lobanov, G. K. Chudinova, A. A. Stomakhin, and A. F. Mironov, Russ. J. Bioorg. Chem. 30, 89 (2004).CrossRefGoogle Scholar
  26. 26.
    I. A. Besschetnova, A. V. Chudinov, D. N. Kalyuzhnyi, A. K. Shchelkina, O. F. Borisova, S. V. Tokalov, V. E. Kuznetsova, A. V. Lobanov, V. D. Rumyantseva, V. E. Barskii, and A. D. Mirzabekov, Biophysics 47, 248 (2002).Google Scholar
  27. 27.
    V. Yu. Plavskii, V. A. Mostovnikov, G. R. Mostovnikova, A. I. Tret’yakova, and A. V. Mikulich, J. Appl. Spectrosc. 71, 818 (2004).CrossRefGoogle Scholar
  28. 28.
    E. I. Zen’kevich, G. A. Kochubeev, and K. I. Salokhiddinov, Zh. Prikl. Spektrosk. 29, 639 (1978).Google Scholar
  29. 29.
    G. P. Gurinovich, A. I. Sevchenko, and K. N. Solov’ev, Spectroscopy of Chlorophyll and Related Compounds (Nauka Tekhnika, Minsk, 1978) [in Russian].Google Scholar
  30. 30.
    E. A. Genina, Biophotonics Methods: Phototherapy (Novyi Veter, Saratov, 2012) [in Russian].Google Scholar
  31. 31.
    H. A. Isakau, M. V. Parkhats, V. N. Knyukshto, et al., J. Photochem. Photobiol. B 92, 165 (2008).CrossRefGoogle Scholar
  32. 32.
    A. K. Visheratina, A. O. Orlova, V. G. Maslov, A. V. Fedorov, and A. V. Baranov, J. Opt. Technol. 82, 738 (2015).CrossRefGoogle Scholar
  33. 33.
    S. L. Fedoruk, T. V. Trukhacheva, S. N. Sokolov, et al., Vestn. Farmats., No. 65, 82 (2014).Google Scholar
  34. 34.
    A. P. Demchenko, Ultraviolet Spectrophotometry of Proteins (Nauk. Dumka, Kiev, 1981; Springer, Berlin, Heidelberg, 1986).CrossRefGoogle Scholar
  35. 35.
    A. A. Krasnovsky, Jr., Biophysics 49, 289 (2004).Google Scholar
  36. 36.
    I. I. Khludeev and V. P. Zorin, Vestn. Belorus. Univ., Ser. 1, No. 2, 19 (2015).Google Scholar
  37. 37.
    G. V. Golovina, V. A. Ol’shevskaya, V. V. Vargin, et al., Zdorov’e Naselen. Sreda Obitan., No. 12, 41 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Plekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations