Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 103–107 | Cite as

Difference in the Mechanisms of the Inhibition of Hydrogen Combustion in the Deflagration and Detonation Modes

  • V. V. Azatyan
  • V. M. Prokopenko
  • N. V. Chapysheva
  • S. K. Abramov
Combustion, Explosion, and Shock Waves


It is shown that, in the process of inhibition of hydrogen combustion by hydrocarbons, intermediate products that play a key role are not only traditionally considered olefins, but also oxygen-containing compounds, such as alcohols, ketones, and the like. The role of the products of incomplete oxidation of inhibitors manifests itself primarily at high temperatures.


combustion flame propagation reaction chain inhibitor detonation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Azatyan, Russ. Chem. Rev. 62, 1021 (1999).CrossRefGoogle Scholar
  2. 2.
    V. V. Azatyan, Russ. J. Phys. Chem. A 85, 1293 (2011).CrossRefGoogle Scholar
  3. 3.
    V. V. Azatyan, Russ. J. Phys. Chem. A 89, 1997 (2015).CrossRefGoogle Scholar
  4. 4.
    V. V. Azatyan, Kinet. Catal. 56, 1 (2015).CrossRefGoogle Scholar
  5. 5.
    L. D. Petrova, V. V. Azatyan, A. H. Baratov, et al., in Combustion and Explosion (Nauka, Moscow, 1977), p. 625 [in Russian].Google Scholar
  6. 6.
    N. N. Semenov, Selected Works (Nauka, Moscow, 2005), Vol. 3 [in Russian].Google Scholar
  7. 7.
    J. H. Knox and J. M. C. Turner, J. Chem. Soc., 3491 (1965).Google Scholar
  8. 8.
    R. R. Baker, R. R. Baldwin, and R. W. Walker, in Proceedings of the 13th International Symposium on Combustion (The Combust. Inst., Pittsburgh, PA, 1971), p. 291.Google Scholar
  9. 9.
    V. N. Kondrat’ev and E. E. Nikitin, Chemical Processes in Gases (Nauka, Moscow, 1981) [in Russian].Google Scholar
  10. 10.
    V. V. Azatyan, K. N. Gaganidze, S. A. Kolesnikov, and G. R. Ozherel’ev, Kinet. Katal. 23, 244 (1982).Google Scholar
  11. 11.
    D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., J. Phys. Chem. Ref. Data 34, 757 (2005).CrossRefGoogle Scholar
  12. 12.
    V. V. Azatyan, Z. S. Andrianova, and A. N. Ivanova, Kinet. Catal. 51, 461 (2010).CrossRefGoogle Scholar
  13. 13.
    V. V. Azatyan, Kinet. Katal. 18, 61 (1977).Google Scholar
  14. 14.
    V. V. Azatyan, L. B. Romanovich, and S. G. Sysoeva, Fiz. Goreniya Vzryva 3, 77 (1967).Google Scholar
  15. 15.
    V. V. Azatyan, S. N. Medvedev, and S. M. Frolov, Russ. J. Phys. Chem. B 4, 308 (2010).CrossRefGoogle Scholar
  16. 16.
    V. V. Azatyan, S. K. Abramov, V. M. Prokopenko, V. I. Ratnikov, and Yu. V. Tunik, Kinet. Catal. 54, 523 (2013).CrossRefGoogle Scholar
  17. 17.
    V. V. Azatyan, S. K. Abramov, G. R. Baimuratova, D. I. Baklanov, and H. Gg. Wagner, Kinet. Catal. 51, 469 (2010).CrossRefGoogle Scholar
  18. 18.
    G. F. Knorre, Furnace Processes (Gosenergoizdat, Moscow, Lenigrad, 1951) [in Russian].Google Scholar
  19. 19.
    S. N. Kopylov, Doctoral (Chem.) Dissertation (VNIIPO of EMERCOM of Russia, Moscow, 1999).Google Scholar
  20. 20.
    S. M. Frolov and S. N. Medvedev, in Deflagrative and Detonative Combustion, Ed. by G. D. Roy and S. M. Frolov (Torus, Moscow, 2010), p. 203.Google Scholar
  21. 21.
    I. S. Gordopolova, Russ. J. Phys. Chem. B 5, 293 (2011).CrossRefGoogle Scholar
  22. 22.
    I. S. Gordopolova, in Transient Combustion and Detonation Phenomena: Fundamentals and Applications, Ed. by G. D. Roy and S. M. Frolov (Torus, Moscow, 2014), p. 299 [in Russian].Google Scholar
  23. 23.
    V. N. Kondrat’ev, Sov. Phys. Usp. 9, 308 (1966).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Azatyan
    • 1
  • V. M. Prokopenko
    • 1
  • N. V. Chapysheva
    • 1
  • S. K. Abramov
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations